1.Jack, C. R., Jr., et al., Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol, 2010. 9(1): p. 119–28.
2.Jack, C. R., Jr., et al., NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s & dementia: the journal of the Alzheimer’s Association, 2018. 14(4): p. 535–562.
3.Kroh, E. M., et al., Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods, 2010. 50(4): p. 298–301.
4.Cheng, L., et al., The detection of microRNA associated with Alzheimer’s disease in biological fluids using next-generation sequencing technologies. Front Genet, 2013. 4: p. 150.
5.Kumar, P., et al., Circulating miRNA biomarkers for Alzheimer’s disease. PLoS One, 2013. 8(7): p. e69807.
6.Wu, H. Z., et al., Circulating microRNAs as Biomarkers of Alzheimer’s Disease: A Systematic Review. J Alzheimers Dis, 2015.
7.Kumar, S. and P. H. Reddy, Are circulating microRNAs peripheral biomarkers for Alzheimer’s disease? Biochim Biophys Acta, 2016. 1862(9): p. 1617–27.
8.Kumar, S., et al., MicroRNAs as Peripheral Biomarkers in Aging and Age-Related Diseases. Prog Mol Biol Transl Sci, 2017. 146: p. 47–94.
9.Nagy, Z., et al., Accuracy of clinical operational diagnostic criteria for Alzheimer’s disease in relation to different pathological diagnostic protocols. Dement Geriatr Cogn Disord, 1998. 9(4): p. 219–26.
10.Ellis, K. A., et al., The Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging: methodology and baseline characteristics of 1112 individuals recruited for a longitudinal study of Alzheimer’s disease. Int Psychogeriatr, 2009. 21(4): p. 672–87.
11.Pike, K. E., et al., Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain, 2007. 130(Pt 11): p. 2837–44.
12.Bourgeat, P., et al., Comparison of MR-less PiB SUVR quantification methods. Neurobiol Aging, 2015. 36 Suppl 1: p. S159–66.
13.Wu, X., et al., sRNAnalyzer-a flexible and customizable small RNA sequencing data analysis pipeline. Nucleic Acids Res, 2017. 45(21): p. 12140–12151.
14.Martin, M., Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011, 2011. 17(1): p. 3.
15.Schmieder, R. and R. Edwards, Quality control and preprocessing of metagenomic datasets. Bioinformatics, 2011. 27(6): p. 863–4.
16.Ewels, P., et al., MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics (Oxford, England), 2016. 32(19): p. 3047–3048.
17.Langmead, B., et al., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biology, 2009. 10(3): p. R25.
18.Fromm, B., et al., A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human microRNAome. Annu Rev Genet, 2015. 49: p. 213–42.
19.Robinson, M. D., D. J. McCarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 2010. 26(1): p. 139–40.
20.Leidinger, P., et al., A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol, 2013. 14(7): p. R78.
21.Huang da, W., B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2009. 4(1): p. 44–57.
22.Kanehisa, M. and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 2000. 28(1): p. 27–30.
23.Folstein, M. F., S. E. Folstein, and P. R. McHugh, “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res, 1975. 12(3): p. 189–98.
24.Mengel-From, J., et al., Circulating, Cell-Free Micro-RNA Profiles Reflect Discordant Development of Dementia in Monozygotic Twins. J Alzheimers Dis, 2018. 63(2): p. 591–601.
25.Heneka, M. T., D. T. Golenbock, and E. Latz, Innate immunity in Alzheimer’s disease. Nat Immunol, 2015. 16(3): p. 229–36.
26.Roe, C. M., et al., Alzheimer disease and cancer. Neurology, 2005. 64(5): p. 895–8.
27.Behrens, M. I., C. Lendon, and C. M. Roe, A common biological mechanism in cancer and Alzheimer’s disease? Current Alzheimer research, 2009. 6(3): p. 196–204.
28.Holohan, K. N., et al., Functional microRNAs in Alzheimer’s disease and cancer: differential regulation of common mechanisms and pathways. Frontiers in Genetics, 2012. 3: p. 323.
29.Zhao, C., et al., Overexpression of miR–15b–5p promotes gastric cancer metastasis by regulating PAQR3. Oncol Rep, 2017. 38(1): p. 352–358.
30.Satoh, J.-i., Y. Kino, and S. Niida, MicroRNA-Seq Data Analysis Pipeline to Identify Blood Biomarkers for Alzheimer’s Disease from Public Data. Biomarker Insights, 2015. 10: p. 21–31.