This study emphasizes rapid and simultaneous adsorptive removal of estrogenic hormones (EHs): estrone (E1), 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and estriol (E3) from wastewater using recycled waste cigarette electrospun nanofibers (WCENFs). The nanofibers exhibited a small diameter (196±65 nm) and large surface area (18.05 m 2 /g), along with a strong affinity towards all EHs by adsorption due to abundant hydrogen bonding interactions. A one-step high-performance liquid chromatography technique was developed to detect each EH present in the solution simultaneously. The adsorption kinetics helps select optimum conditions for the large-scale removal process, so experimental data using pseudo-first-order, pseudo-second-order, intra-particle diffusion, Elovich, and fractional power models were fitted. It was found that E1, E2, and EE2 followed pseudo-second-order kinetics while E3 followed pseudo-first-order kinetic models. The total adsorption capacity on WCENFs was determined to be 2.14 mg/g, whereas the individual adsorption capacities of E1, E2, EE2, and E3 were found to be 0.551, 0.532, 0.687, and 0.369 mg/g, respectively. The percentage efficiency of WCENFs was highest with EE2 ~64.3% and least with E3 ~34.6%. Adsorption-desorption studies revealed that WCENFs could repeatedly be used four times. The reported results indicate a significant potential of WCENFs to be an effective sorbent and portable filter for simultaneous estrogenic hormone removal. WCENFs filter is a suitable alternative to commercial Cellulose acetate filters.