1 Nel, A., Xia, T., Mädler, L. & Li, N. Toxic potential of materials at the nanolevel. Science 311, 622-627 (2006).
2 Li, Y. et al. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 33, 402-411 (2012).
3 Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137-143 (2013).
4 Sauvage, F. et al. Nanomaterials to avoid and destroy protein aggregates. Nano Today, 100837 (2020).
5 Chen, B., Retzlaff, M., Roos, T. & Frydman, J. Cellular strategies of protein quality control. Cold Spring Harb. Perspect. Biol. 3, a004374 (2011).
6 Wu, J. & Kaufman, R. J. From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ 13, 374-384, doi:10.1038/sj.cdd.4401840 (2006).
7 de Vrij, F. M., Fischer, D. F., van Leeuwen, F. W. & Hol, E. M. Protein quality control in Alzheimer's disease by the ubiquitin proteasome system. Progress in neurobiology 74, 249-270, doi:10.1016/j.pneurobio.2004.10.001 (2004).
8 Schönthal, A. H. Endoplasmic reticulum stress and autophagy as targets for cancer therapy. Cancer Letters 275, 163-169, doi:https://doi.org/10.1016/j.canlet.2008.07.005 (2009).
9 Dubnikov, T., Ben-Gedalya, T. & Cohen, E. Protein Quality Control in Health and Disease. Cold Spring Harb Perspect Biol 9, doi:10.1101/cshperspect.a023523 (2017).
10 Hwang, J. & Qi, L. Quality Control in the Endoplasmic Reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci 43, 593-605, doi:10.1016/j.tibs.2018.06.005 (2018).
11 Haze, K., Yoshida, H., Yanagi, H., Yura, T. & Mori, K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10, 3787-3799, doi:10.1091/mbc.10.11.3787 (1999).
12 Mori, K., Ma, W. Z., Gething, M. J. & Sambrook, J. A Transmembrane Protein with a Cdc2+/Cdc28-Related Kinase-Activity Is Required for Signaling from the Er to the Nucleus. Cell 74, 743-756 (1993).
13 Shi, Y. et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18, 7499-7509, doi:10.1128/mcb.18.12.7499 (1998).
14 Buchberger, A., Bukau, B. & Sommer, T. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol cell 40, 238-252, doi:10.1016/j.molcel.2010.10.001 (2010).
15 Nishikawa, S., Brodsky, J. L. & Nakatsukasa, K. Roles of molecular chaperones in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). J Biochem 137, 551-555, doi:10.1093/jb/mvi068 (2005).
16 Terrab, L. & Wipf, P. Hsp70 and the Unfolded Protein Response as a Challenging Drug Target and an Inspiration for Probe Molecule Development. ACS Med Chem Lett. 11, 232-236, doi:10.1021/acsmedchemlett.9b00583 (2020).
17 Sperling, R. A., Gil, P. R., Zhang, F., Zanella, M. & Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896-1908 (2008).
18 Yen, H. J., Hsu, S. h. & Tsai, C. L. Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes. Small 5, 1553-1561 (2009).
19 Li, Y. et al. Assessing the Immunosafety of Engineered Nanoparticles with a Novel in vitro Model Based on Human Primary Monocytes. ACS Appl. Mater. Interfaces 8 (42), 28437–28447, doi:10.1021/acsami.6b06278 (2016).
20 Chang, M. Y. et al. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci 99, 1479-1484, doi:10.1111/j.1349-7006.2008.00827.x (2008).
21 Pan, T. et al. miR-29b-Loaded Gold Nanoparticles Targeting to the Endoplasmic Reticulum for Synergistic Promotion of Osteogenic Differentiation. ACS Appl Mater Interfaces 8, 19217-19227, doi:10.1021/acsami.6b02969 (2016).
22 Noël, C., Simard, J.-C. & Girard, D. Gold nanoparticles induce apoptosis, endoplasmic reticulum stress events and cleavage of cytoskeletal proteins in human neutrophils. Toxicology in Vitro 31, 12-22 (2016).
23 Tsai, Y. Y. et al. Identification of the nanogold particle-induced endoplasmic reticulum stress by omic techniques and systems biology analysis. ACS nano 5, 9354-9369, doi:10.1021/nn2027775 (2011).
24 Deng, Z. J., Liang, M., Monteiro, M., Toth, I. & Minchin, R. F. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat. Nanotechnol. 6, 39-44 (2011).
25 Shang, L., Wang, Y., Jiang, J. & Dong, S. pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23, 2714-2721 (2007).
26 Tsai, D.-H. et al. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27, 2464-2477 (2011).
27 Janeway, C. A., Capra, J. D., Travers, P. & Walport, M. Immunobiology: the immune system in health and disease. (1999).
28 Li, Y. & Boraschi, D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine (Lond) 11, 269-287, doi:10.2217/nnm.15.196 (2016).
29 Murali, K. et al. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells. Nanoscale 7, 4199-4210 (2015).
30 Li, Y., Fujita, M. & Boraschi, D. Endotoxin contamination in nanomaterials leads to the misinterpretation of immunosafety results. Front. Immunol. 8, doi:10.3389/fimmu.2017.00472 (2017).
31 Komander, D. & Rape, M. The ubiquitin code. Annu Rev Biochem 81, 203-229, doi:10.1146/annurev-biochem-060310-170328 (2012).
32 Chen, L., Zhu, G., Johns, E. M. & Yang, X. TRIM11 activates the proteasome and promotes overall protein degradation by regulating USP14. Nat. Commun. 9, 1-14 (2018).
33 Buchberger, A., Bukau, B. & Sommer, T. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol cell 40, 238-252 (2010).
34 Menendez-Benito, V., Verhoef, L. G., Masucci, M. G. & Dantuma, N. P. Endoplasmic reticulum stress compromises the ubiquitin–proteasome system. Hum. Mol. Genet. 14, 2787-2799 (2005).
35 Yang, M., Omura, S., Bonifacino, J. S. & Weissman, A. M. Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes. J. Exp. Med. 187, 835-846 (1998).
36 Amen, O. M., Sarker, S. D., Ghildyal, R. & Arya, A. Endoplasmic reticulum stress activates unfolded protein response signaling and mediates inflammation, obesity, and cardiac dysfunction: therapeutic and molecular approach. Front. Pharmacol. 10 (2019).
37 Cao, S. S. & Kaufman, R. J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 21, 396-413, doi:10.1089/ars.2014.5851 (2014).
38 Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184-190 (2011).
39 Hetz, C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13, 89-102, doi:10.1038/nrm3270 (2012).
40 Yoshida, H., Oku, M., Suzuki, M. & Mori, K. pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J Cell Biol 172, 565-575, doi:10.1083/jcb.200508145 (2006).
41 Okuda-Shimizu, Y. & Hendershot, L. M. Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp. Mol cell 28, 544-554 (2007).
42 Larsen, S. B., Cowley, C. J. & Fuchs, E. Epithelial cells: liaisons of immunity. Curr Opin Immunol 62, 45-53, doi:10.1016/j.coi.2019.11.004 (2020).
43 Kagnoff, M. F. & Eckmann, L. Epithelial cells as sensors for microbial infection. J. Clin. Invest. 100 (1), 6-10 (1997).
44 Li, Y. & Monteiro-Riviere, N. A. Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine 11, 3185-3203 (2016).
45 Werman, A. et al. The precursor form of IL-1α is an intracrine proinflammatory activator of transcription. Proc. Natl. Acad. Sci. U. S. A. 101, 2434-2439 (2004).
46 Rider, P. et al. IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J. Immunol. 187, 4835-4843 (2011).
47 Kunkel, S. L., Standiford, T., Kasahara, K. & Strieter, R. M. Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Experimental lung research 17, 17-23 (1991).
48 Lynch, I., Salvati, A. & Dawson, K. A. Protein-nanoparticle interactions: what does the cell see? Nat. Nanotechnol. 4, 546-547 (2009).
49 Monopoli, M. P. et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. Journal of the American Chemical Society 138, 2525–2534 (2011).
50 Comyn, S. A., Chan, G. T. & Mayor, T. False start: cotranslational protein ubiquitination and cytosolic protein quality control. J Proteomics 100, 92-101, doi:10.1016/j.jprot.2013.08.005 (2014).
51 Amm, I., Sommer, T. & Wolf, D. H. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta 1843, 182-196, doi:10.1016/j.bbamcr.2013.06.031 (2014).
52 Ruggiano, A., Foresti, O. & Carvalho, P. ER-associated degradation: Protein quality control and beyond. J. Cell Biol. 204, 869-879 (2014).
53 Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881-891 (2001).
54 Li, Y., Guo, Y., Tang, J., Jiang, J. & Chen, Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta biochimica et biophysica Sinica 46, 629-640 (2014).
55 Sano, R. & Reed, J. C. ER stress-induced cell death mechanisms. Biophys. Acta, Mol. Cell Res. 1833, 3460-3470 (2013).
56 Fu, P. P., Xia, Q., Hwang, H. M., Ray, P. C. & Yu, H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22, 64-75, doi:10.1016/j.jfda.2014.01.005 (2014).
57 Corbo, C. et al. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine 11, 81-100 (2016).
58 Hu, W. et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5, 3693-3700, doi:10.1021/nn200021j (2011).
59 Persaud, I. et al. Biocorona formation contributes to silver nanoparticle induced endoplasmic reticulum stress. Ecotoxicol Environ Saf 170, 77-86, doi:10.1016/j.ecoenv.2018.11.107 (2019).
60 Quaresma, J. A. S. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 32, e00034-00018, doi:10.1128/CMR.00034-18 (2019).
61 Tian, M. et al. Adipose-Derived Biogenic Nanoparticles for Suppression of Inflammation. Small 16, e1904064, doi:10.1002/smll.201904064 (2020).
62 Crisan, D. et al. Topical silver and gold nanoparticles complexed with Cornus mas suppress inflammation in human psoriasis plaques by inhibiting NF-kappaB activity. Exp Dermatol 27, 1166-1169, doi:10.1111/exd.13707 (2018).
63 Kim, J. H. et al. Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge. Int J Nanomedicine 9 Suppl 2, 183-193, doi:10.2147/IJN.S57934 (2014).
64 Li, Y. et al. Optimising the use of commercial LAL assays for the analysis of endotoxin contamination in metal colloids and metal oxide nanoparticles. Nanotoxicology 9, 462-473 (2015).
65 Feshitan, J. A., Vlachos, F., Sirsi, S. R., Konofagou, E. E. & Borden, M. A. Theranostic Gd (III)-lipid microbubbles for MRI-guided focused ultrasound surgery. Biomaterials 33, 247-255 (2012).
66 Cho, E. C., Xie, J., Wurm, P. A. & Xia, Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano letters 9, 1080-1084 (2009).
67 Liu, Y. et al. TRIM25 promotes the cell survival and growth of hepatocellular carcinoma through targeting Keap1-Nrf2 pathway. Nat. Commun. 11, 1-13 (2020).