1. van Os J, Kapur S. Schizophrenia. Lancet. 2009;374(9690):635-45.
2. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1789-858.
3. van Os J, Kapur S. Schizophrenia. The Lancet. 2009;374(9690):635-45.
4. Taylor MA, Gaztanaga P, Abrams R. Manic-depressive illness and acute schizophrenia: a clinical, family history, and treatment-response study. Am J Psychiatry. 1974;131(6):678-82.
5. Mäki P, Veijola J, Jones PB, Murray GK, Koponen H, Tienari P, et al. Predictors of schizophrenia—a review. British Medical Bulletin. 2005;73-74(1):1-15.
6. Leung AKL, Sharp PA. MicroRNA Functions in Stress Responses. Molecular Cell. 2010;40(2):205-15.
7. Bushati N, Cohen SM. microRNA Functions. Annual Review of Cell and Developmental Biology. 2007;23(1):175-205.
8. Kloosterman WP, Plasterk RH. The diverse functions of microRNAs in animal development and disease. Developmental cell. 2006;11(4):441-50.
9. Maes OC, An J, Sarojini H, Wang E. Murine microRNAs implicated in liver functions and aging process. Mechanisms of Ageing and Development. 2008;129(9):534-41.
10. Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and function. Thromb Haemost. 2012;107(04):605-10.
11. Tang X, Tang G, Özcan S. Role of microRNAs in diabetes. Biochimica Et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2008;1779(11):697-701.
12. Van Wijnen AJ, Van De Peppel J, Van Leeuwen JP, Lian JB, Stein GS, Westendorf JJ, et al. MicroRNA functions in osteogenesis and dysfunctions in osteoporosis. Current osteoporosis reports. 2013;11(2):72-82.
13. Nelson PT, Wang WX, Rajeev BW. MicroRNAs (miRNAs) in neurodegenerative diseases. Brain pathology. 2008;18(1):130-8.
14. Islam MS, Khan MAAK, Murad MW, Karim M, Islam ABMMK. In silico analysis revealed Zika virus miRNAs associated with viral pathogenesis through alteration of host genes involved in immune response and neurological functions. Journal of medical virology. 2019;91(9):1584-94.
15. Seven M, Karatas OF, Duz MB, Ozen M. The role of miRNAs in cancer: from pathogenesis to therapeutic implications. Future Oncology. 2014;10(6):1027-48.
16. Shi W, Du J, Qi Y, Liang G, Wang T, Li S, et al. Aberrant expression of serum miRNAs in schizophrenia. Journal of Psychiatric Research. 2012;46(2):198-204.
17. Perkins DO, Jeffries CD, Jarskog LF, Thomson JM, Woods K, Newman MA, et al. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology. 2007;8(2):R27.
18. Hauberg ME, Roussos P, Grove J, Børglum AD, Mattheisen M, Consortium ftSWGotPG. Analyzing the Role of MicroRNAs in Schizophrenia in the Context of Common Genetic Risk Variants. JAMA Psychiatry. 2016;73(4):369-77.
19. He K, Guo C, He L, Shi Y. MiRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas. 2017;155(1):9.
20. Torkamani A, Dean B, Schork NJ, Thomas EA. Coexpression network analysis of neural tissue reveals perturbations in developmental processes in schizophrenia. Genome Res. 2010;20(4):403-12.
21. Kim Y, Giusti-Rodriguez P, Crowley JJ, Bryois J, Nonneman RJ, Ryan AK, et al. Comparative genomic evidence for the involvement of schizophrenia risk genes in antipsychotic effects. Molecular Psychiatry. 2018;23(3):708-12.
22. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, et al. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008;11(11):1271-82.
23. Wen Y-D, Xia Z-W, Li D-J, Cheng Q, Zhao Q, Cao H. Genetic Profiles Playing Opposite Roles of Pathogenesis in Schizophrenia and Glioma. Journal of Oncology. 2020;2020:3656841.
24. Radulescu E, Jaffe AE, Straub RE, Chen Q, Shin JH, Hyde TM, et al. Identification and prioritization of gene sets associated with schizophrenia risk by co-expression network analysis in human brain. Molecular Psychiatry. 2020;25(4):791-804.
25. Liu L, Zhao J, Chen Y, Feng R. Metabolomics strategy assisted by transcriptomics analysis to identify biomarkers associated with schizophrenia. Analytica Chimica Acta. 2020;1140:18-29.
26. Zhang Y, You X, Li S, Long Q, Zhu Y, Teng Z, et al. Peripheral Blood Leukocyte RNA-Seq Identifies a Set of Genes Related to Abnormal Psychomotor Behavior Characteristics in Patients with Schizophrenia. Medical science monitor : international medical journal of experimental and clinical research. 2020;26:e922426-e.
27. Feltrin ASA, Tahira AC, Simões SN, Brentani H, Martins DC, Jr. Assessment of complementarity of WGCNA and NERI results for identification of modules associated to schizophrenia spectrum disorders. PloS one. 2019;14(1):e0210431-e.
28. Purcell SM, Wray NR, Stone JL, Visscher PM, O'Donovan MC, Sullivan PF, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748-52.
29. Bassett AS, Chow EW, Weksberg R, Brzustowicz L. Schizophrenia and genetics: new insights. Current psychiatry reports. 2002;4(4):307-14.
30. O'Donovan MC, Owen MJ. Candidate-gene association studies of schizophrenia. American journal of human genetics. 1999;65(3):587-92.
31. Maric NP, Svrakic DM. Why schizophrenia genetics needs epigenetics: a review. Psychiatria Danubina. 2012;24(1):2-18.
32. Pries L-K, Gülöksüz S, Kenis G. DNA Methylation in Schizophrenia. In: Delgado-Morales R, editor. Neuroepigenomics in Aging and Disease. Cham: Springer International Publishing; 2017. p. 211-36.
33. Smyth GK. Limma: linear models for microarray data. Bioinformatics and computational biology solutions using R and Bioconductor: Springer; 2005. p. 397-420.
34. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9(1):1-13.
35. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research. 2003;13(11):2498-504.
36. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-3.
37. Kutmon M, Kelder T, Mandaviya P, Evelo CT, Coort SL. CyTargetLinker: a cytoscape app to integrate regulatory interactions in network analysis. PloS one. 2013;8(12):e82160.
38. Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic acids research. 2007;36(suppl_1):D154-D8.
39. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. elife. 2015;4:e05005.
40. Wang J, Lu M, Qiu C, Cui Q. TransmiR: a transcription factor–microRNA regulation database. Nucleic acids research. 2010;38(suppl_1):D119-D22.
41. Foss KM, Sima C, Ugolini D, Neri M, Allen KE, Weiss GJ. miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer. Journal of thoracic oncology. 2011;6(3):482-8.
42. Cui Z, Tang J, Chen J, Wang Z. Hsa-miR-574-5p negatively regulates MACC-1 expression to suppress colorectal cancer liver metastasis. Cancer cell international. 2014;14(1):1-9.
43. Yang M, Liu R, Sheng J, Liao J, Wang Y, Pan E, et al. Differential expression profiles of microRNAs as potential biomarkers for the early diagnosis of esophageal squamous cell carcinoma. Oncology reports. 2013;29(1):169-76.
44. Hegewald AB, Breitwieser K, Ottinger SM, Mobarrez F, Korotkova M, Rethi B, et al. Extracellular miR-574-5p Induces Osteoclast Differentiation via TLR 7/8 in Rheumatoid Arthritis. Front Immunol. 2020;11:585282.
45. Wang F, Li Z, Zhao M, Ye W, Wu H, Liao Q, et al. Circulating miRNAs miR-574-5p and miR-3135b are potential metabolic regulators for serum lipids and blood glucose in gestational diabetes mellitus. Gynecological Endocrinology. 2021;37(7):665-71.