Synthetic Wavelength Holography: Snapshot Non-Line-of-Sight Imaging with High-Resolution and Wide Field of View
The presence of a scattering medium in the imaging path between an object and an observer is known to severely limit the visual acuity of the imaging system. We present an approach to circumvent the deleterious effects of scattering, by exploiting spectral correlations in scattered wavefronts. Our Synthetic Wavelength Holography (SWH) method is able to recover a holographic representation of hidden targets with high resolution over a wide field of view. The complete object field is recorded in a snapshot-fashion, by monitoring the scattered light return in a small probe area. This unique combination of attributes opens up a plethora of new Non-Line-of-Sight imaging applications ranging from medical imaging and forensics, to early-warning navigation systems and reconnaissance. Adapting the findings of this work to other wave phenomena will help unlock a wider gamut of applications beyond those envisioned in this paper.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the latest manuscript can be downloaded and accessed as a PDF.
This is a list of supplementary files associated with this preprint. Click to download.
Posted 03 Dec, 2020
Synthetic Wavelength Holography: Snapshot Non-Line-of-Sight Imaging with High-Resolution and Wide Field of View
Posted 03 Dec, 2020
The presence of a scattering medium in the imaging path between an object and an observer is known to severely limit the visual acuity of the imaging system. We present an approach to circumvent the deleterious effects of scattering, by exploiting spectral correlations in scattered wavefronts. Our Synthetic Wavelength Holography (SWH) method is able to recover a holographic representation of hidden targets with high resolution over a wide field of view. The complete object field is recorded in a snapshot-fashion, by monitoring the scattered light return in a small probe area. This unique combination of attributes opens up a plethora of new Non-Line-of-Sight imaging applications ranging from medical imaging and forensics, to early-warning navigation systems and reconnaissance. Adapting the findings of this work to other wave phenomena will help unlock a wider gamut of applications beyond those envisioned in this paper.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Due to technical limitations, full-text HTML conversion of this manuscript could not be completed. However, the latest manuscript can be downloaded and accessed as a PDF.