1.
Coscas F, Sellam A, Glacet-Bernard A, et al. Normative Data for Vascular Density in
Superficial and Deep Capillary Plexuses of Healthy Adults Assessed by Optical Coherence
Tomography Angiography. Invest Ophthalmol Vis Sci. 2016;57(9):Oct211-223.
2.
Buttery RG, Hinrichsen CF, Weller WL, Haight JR. How thick should a retina be? A comparative
study of mammalian species with and without intraretinal vasculature. Vision research. 1991;31(2):169-187.
3.
Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood
in the human retina. Circulation. 1961;24:82-86.
4.
Spaide RF, Klancnik JM, Jr., Cooney MJ. Retinal vascular layers imaged by fluorescein
angiography and optical coherence tomography angiography. JAMA ophthalmology. 2015;133(1):45-50.
5.
Trindade-Porto C, Alonso-Llamazares A, Robledo T, et al. Fluorescein-induced adverse
reaction. Allergy. 1999;54(11):1230.
6.
Hagag AM, Gao SS, Jia Y, Huang D. Optical coherence tomography angiography: Technical
principles and clinical applications in ophthalmology. Taiwan journal of ophthalmology. 2017;7(3):115-129.
7.
Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography
of vascular abnormalities in the living human eye. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(18):E2395-2402.
8.
Mastropasqua L, Borrelli E, Carpineto P, et al. Microvascular changes after vitrectomy
with internal limiting membrane peeling: an optical coherence tomography angiography
study. International ophthalmology. 2018;38(4):1465-1472.
9.
Mastropasqua R, Toto L, Senatore A, et al. Optical coherence tomography angiography
findings in Susac's syndrome: a case report. International ophthalmology. 2018;38(4):1803-1808.
10.
Jonas JB, Hayreh SS. Ophthalmoscopic appearance of the normal optic nerve head in
rhesus monkeys. Invest Ophthalmol Vis Sci. 2000;41(10):2978-2983.
11.
Hood DC, Frishman LJ, Saszik S, Viswanathan S. Retinal origins of the primate multifocal
ERG: implications for the human response. Investigative Ophthalmology & Visual Science. 2002;43(5):1673.
12.
Wilsey LJ, Reynaud J, Cull G, Burgoyne CF, Fortune B. Macular Structure and Function
in Nonhuman Primate Experimental Glaucoma. Invest Ophthalmol Vis Sci. 2016;57(4):1892-1900.
13.
T Michael N, Kim CBY, Munsey KM, Dashek RJ, Hoeve JNV. Regional choroidal blood flow
and multifocal electroretinography in experimental glaucoma in rhesus macaques. Investigative Ophthalmology & Visual Science. 2014;55(12):7786-7798.
14.
Yu J, Jiang C, Wang X, et al. Macular perfusion in healthy Chinese: an optical coherence
tomography angiogram study. Invest Ophthalmol Vis Sci. 2015;56(5):3212-3217.
15.
Fang D, Tang FY, Huang H, Cheung CY, Chen H. Repeatability, interocular correlation
and agreement of quantitative swept-source optical coherence tomography angiography
macular metrics in healthy subjects. The British journal of ophthalmology. 2019;103(3):415-420.
16.
Li J, Yang YQ, Yang DY, et al. Reproducibility of Perfusion Parameters of Optic Disc
and Macula in Rhesus Monkeys by Optical Coherence Tomography Angiography. Chinese medical journal. 2016;129(9):1087-1090.
17.
Ishibazawa A, Nagaoka T, Takahashi A, et al. Optical Coherence Tomography Angiography
in Diabetic Retinopathy: A Prospective Pilot Study. American Journal of Ophthalmology. 2015;160(1):35-
18.
Cohen SY, Miere A, Nghiem-Buffet S, Fajnkuchen F, Souied EH, Mrejen S. Clinical applications
of optical coherence tomography angiography: What we have learnt in the first 3 years.
European journal of ophthalmology. 2018:1120672117753704.
19.
Jia Y, Ou T, Tokayer J, et al. Split-spectrum amplitude-decorrelation angiography
with optical coherence tomography. Optics Express. 2012;20(4):4710-4725.
20.
Bajwa A, Aman R, Reddy AK. A comprehensive review of diagnostic imaging technologies
to evaluate the retina and the optic disk. International ophthalmology. 2015;35(5):733-755.
21.
Hong BK, Nazari KH, Rao NA. Role of ultra-widefield fluorescein angiography in the
management of uveitis. Canadian Journal of Ophthalmology Journal Canadien Dophtalmologie. 2013;48(6):489-493.
22.
Weinhaus RS, Burke JM, Delori FC, Snodderly DM. Comparison of fluorescein angiography
with microvascular anatomy of macaque retinas. Experimental Eye Research. 1995;61(1):1-16.
23.
Alterman M, Henkind P. Radial peripapillary capillaries of the retina. II. Possible
role in Bjerrum scotoma. British Journal of Ophthalmology. 1967;52(1):26-31.
24.
Bonnin S, Mane V, Couturier A, et al. NEW INSIGHT INTO THE MACULAR DEEP VASCULAR PLEXUS
IMAGED BY OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina (Philadelphia, Pa). 2015;35(11):2347-2352.
25.
Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography
of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014;121(7):1435-1444.
26.
Agemy SA, Scripsema NK, Shah CM, et al. RETINAL VASCULAR PERFUSION DENSITY MAPPING
USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN NORMALS AND DIABETIC RETINOPATHY
PATIENTS. Retina (Philadelphia, Pa). 2015;35(11):2353-2363.
27.
Liang MC, Witkin AJ. Optical Coherence Tomography Angiography of Mixed Neovascularizations
in Age-Related Macular Degeneration. Developments in ophthalmology. 2016;56:62-70.
28.
Miere A, Querques G, Semoun O, El Ameen A, Capuano V, Souied EH. OPTICAL COHERENCE
TOMOGRAPHY ANGIOGRAPHY IN EARLY TYPE 3 NEOVASCULARIZATION. Retina (Philadelphia, Pa). 2015;35(11):2236-2241.
29.
Srour M, Querques G, Semoun O, et al. Optical coherence tomography angiography characteristics
of polypoidal choroidal vasculopathy. The British journal of ophthalmology. 2016;100(11):1489-1493.
30.
Bulut M, Kurtuluş F, Gözkaya O, et al. Evaluation of optical coherence tomography
angiographic findings in Alzheimer's type dementia. British Journal of Ophthalmology.
2017:bjophthalmol-2017-310476.