[1] Morales-Oyervides L, Oliveira J, Sousa-Gallagher M, et al. Assessment of the dyeing properties of the pigments produced by talaromyces spp. J Fungi 2017, 3: 38.
[2] Liang J, Xiaoxia W. “Prototype of a pigments color chart for the digital conservation of ancient murals.”J Electron Imaging 2017, 26: 023013.
[3] Mishra MK, Schöttle C, Van Dyk A, et al. A Wettability reversal of hydrophobic pigment particles comprising nanoscale organosilane shells: Concentrated aqueous dispersions and corrosion-resistant waterborne coatings. ACS Appl Mater Interfaces 2019, 11: 44851-44864.
[4] Ravi SK, Udayagiri VS, Suresh L. Emerging role of the band-Structure approach in biohybrid photovoltaics: A path beyond bioelectrochemistry. Adv Funct Mater 2018, 28: 1705305.
[5] Yoshioka S, Shimizu Y, Kinoshita S, et al. Biomimetics structural color of a lycaenid butterfly: analysis of an aperiodic multilayer structure. Bioinspir Biomin 2013, 8: 045001.
[6] Freyer P, Wilts BD, Stavenga DG. Reflections on iridescent neck and breast feathers of the peacock, Pavo cristatus. Interfaces Focus 2019, 9: 20180043.
[7] Teyssier J, Saenko SV, Van Der Marel D. Photonic crystals cause active colour change in chameleons. Nat Commun 2015, 6: 1-7.
[8] Wang Y, Cui H, Zhao Q, et al. Chameleon-inspired structural-color actuators. Matter 2019, 1: 626-638.
[9] Wu P, Wang J, Jiang L. Bio-inspired photonic crystal patterns. J Maters Horiz 2020, 7: 338-365.
[10] Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors. Rep Prog Phys 2008, 71: 076401.
[11] Glenn S. Structural color of Morpho butterflies. J Phys 2009, 77: 1010-1019.
[12] Seago AE, Oberprieler R, Saranathan VK. Evolution of insect iridescence: origins of three-dimensional photonic crystals in weevils (Coleoptera: Curculionoidea). Integr Comp Biol 2019, 59: 1664-1672.
[13] Mika F, Matějková-Plšková J, Jiwajinda S, et al. Photonic crystal structure and coloration of wing scales of butterflies exhibiting selective wavelength iridescence. Materials 2012, 5: 754-771.
[14] Aguirre CI, Reguera E, Stein A. Colloidal photonic crystal pigments with low angle dependence. ACS Appl Mater Interfaces 2010, 2: 3257-3262.
[15] Meng F, Umair MM, Iqbal K, et al. Rapid fabrication of noniridescent structural color coatings with high color visibility, good structural stability, and self-healing properties. ACS Appl Mater Interfaces 2019, 11: 13022-13028.
[16] Liu P, Chen J, Zhang Z, et al. Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays. Nanoscale 2018, 10:3673-3679.
[17] Zhao Y, Xie Z, Gu H, et al. Bio-inspired variable structural color materials. Chem Soc Rev 2012, 41: 3297-3317.
[18] Shi L, Zhang Y, Dong B, et al. Amorphous photonic crystals with only short-range order. Adv Mater 2013, 25: 5314-5320.
[19] Wang F, Zhang X, Lin Y, et al. Structural coloration pigments based on carbon modified ZnS@SiO2 nanospheres with low-angle dependence, high color saturation, and enhanced stability. ACS Appl Mater Interfaces 2016, 8: 5009-5016.
[20] Liu Y, Wang Y, Wang Y, et al. Bioinspired structural color particles with multi-layer graphene oxide encapsulated nanoparticle components. Bioact Mater 2020, 5: 917-923.
[21] Li F, Tang B, Xiu J, et al. Hydrophilic modification of multi-walled carbon nanotube for building photonic crystals with enhanced color visibility and mechanical strength. Molecules 2016, 21: 547.
[22] Hu Y, Yang D, Huang S. Amorphous photonic structures with brilliant and noniridescent colors via polymer-assisted colloidal assembly. ACS Omega 2019, 4: 18771-18779.
[23] Goerlitzer ESA, Klupp Taylor RN, Vogel N. Bioinspired photonic pigments from colloidal self-assembly. Adv Mater 2018, 30: 1706654.
[24] Chen S, Lu W, Shen H, et al. The development of new pigments: Colorful g-C3N4-based catalysts for nicotine removal. Appl Catal B-Environ 2019, 254: 500-509.
[25] Kuang M, Wang J, Bao B, et al. Inkjet printing patterned photonic crystal domes for wide viewing‐angle displays by controlling the sliding three phase contact line. Adv Opt Mater 2014, 2: 34-38.
[26] Cao Y, Li Q, Li C, et al. Surface heterojunction between (001) and (101) facets of ultrafine anatase TiO2 nanocrystals for highly efficient photoreduction CO2 to CH4. Appl Catal B-Environ 2016, 198: 378-388.
[27] Song H, Li C, Lou Z. Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. ASC Sustain Chem Eng 2017, 5: 8982-8987.
[28] Low J, Zhang L, Zhu B, et al. TiO2 photonic crystals with localized surface photothermal effect and enhanced photocatalytic CO2 reduction activity. ASC Sustain Chem Eng 2018, 6: 15653-15661.
[29] Kafizas A, Kellici S, Darr, et al. Titanium dioxide and composite metal/metal oxide titania thin films on glass: a comparative study of photocatalytic activity. J Photoch Photobio A 2009, 204: 183-190.
[30] Zhang K, Park J. Surface localization of defects in black TiO2: enhancing photoactivity or reactivity. J Phys Chem Lett 2017, 8: 199-207.
[31] Lu X, Wang G, Zhai T, et al. Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett 2012,12:1690-1696.
[32] Ge B, Han L, Gao B, et al. A mesoporous SiO2/TiO2 composite used for various emulsions separation. J Sep Sci Technol 2019, 54: 962-969.
[33] Liu L, Wang X, Cheng B, et al. Modification of spherical SiO2 particles via electrolyte for high zeta potential and self-assembly of SiO2 photonic crystal. J Brazil Chem Soc 2009, 20: 46-50.
[34] Nemtsev IV, Tambasov IA, Ivanenko AA, et al. Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal. Photonics Nanostruct 2018, 28: 37-44.
[35] Xuan X, Tu S, Yu H, et al. Size-dependent selectivity and activity of CO2 photoreduction over black nano-titanias grown on dendritic porous silica particles. Appl Catal B-Environ 2019, 255: 117768.