[1] Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev Genet 2019;20:207–20. https://doi.org/10.1038/s41576-018-0089-8.
[2] Tsompana M, Buck MJ. Chromatin accessibility: a window into the genome. Epigenetics Chromatin 2014;7:33. https://doi.org/10.1186/1756-8935-7-33.
[3] Li D, Shu X, Zhu P, Pei D. Chromatin accessibility dynamics during cell fate reprogramming. EMBO Rep 2021;22:e51644. https://doi.org/10.15252/embr.202051644.
[4] Sundaramoorthy R, Owen-Hughes T. Chromatin remodelling comes into focus. F1000Research 2020;9. https://doi.org/10.12688/f1000research.21933.1.
[5] Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem 2009;78:273–304. https://doi.org/10.1146/annurev.biochem.77.062706.153223.
[6] Sun Y, Miao N, Sun T. Detect accessible chromatin using ATAC-sequencing, from principle to applications. Hereditas 2019;156:29. https://doi.org/10.1186/s41065-019-0105-9.
[7] Shashikant T, Ettensohn CA. Genome-wide analysis of chromatin accessibility using ATAC-seq. Methods Cell Biol 2019;151:219–35. https://doi.org/10.1016/bs.mcb.2018.11.002.
[8] Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS. Chromatin accessibility and histone acetylation in the regulation of competence in early development. Dev Biol 2020;462:20–35. https://doi.org/10.1016/j.ydbio.2020.02.013.
[9] Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet 2020;21:71–87. https://doi.org/10.1038/s41576-019-0173-8.
[10] Friman ET, Deluz C, Meireles-Filho AC, Govindan S, Gardeux V, Deplancke B, et al. Dynamic regulation of chromatin accessibility by pluripotency transcription factors across the cell cycle. ELife 2019;8. https://doi.org/10.7554/eLife.50087.
[11] Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381–95. https://doi.org/10.1038/cr.2011.22.
[12] Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41–5. https://doi.org/10.1038/47412.
[13] Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E, et al. The accessible chromatin landscape of the human genome. Nature 2012;489:75–82. https://doi.org/10.1038/nature11232.
[14] Nair S, Kim DS, Perricone J, Kundaje A. Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts. Bioinforma Oxf Engl 2019;35:i108–16. https://doi.org/10.1093/bioinformatics/btz352.
[15] Wang C, Li J. A Deep Learning Framework Identifies Pathogenic Noncoding Somatic Mutations from Personal Prostate Cancer Genomes. Cancer Res 2020;80:4644–54. https://doi.org/10.1158/0008-5472.CAN-20-1791.
[16] Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS, et al. A method to predict the impact of regulatory variants from DNA sequence. Nat Genet 2015;47:955–61. https://doi.org/10.1038/ng.3331.
[17] Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 2015;12:931–4. https://doi.org/10.1038/nmeth.3547.
[18] Zhou J, Park CY, Theesfeld CL, Wong AK, Yuan Y, Scheckel C, et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat Genet 2019;51:973–80. https://doi.org/10.1038/s41588-019-0420-0.
[19] Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015;7:a025064. https://doi.org/10.1101/cshperspect.a025064.
[20] Giaimo BD, Ferrante F, Herchenröther A, Hake SB, Borggrefe T. The histone variant H2A.Z in gene regulation. Epigenetics Chromatin 2019;12:37. https://doi.org/10.1186/s13072-019-0274-9.
[21] Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet 2016;17:487–500. https://doi.org/10.1038/nrg.2016.59.
[22] Koch CM, Andrews RM, Flicek P, Dillon SC, Karaöz U, Clelland GK, et al. The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res 2007;17:691–707. https://doi.org/10.1101/gr.5704207.
[23] Obad S, Olofsson T, Mechti N, Gullberg U, Drott K. Regulation of the interferon-inducible p53 target gene TRIM22 (Staf50) in human T lymphocyte activation. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res 2007;27:857–64. https://doi.org/10.1089/jir.2006.0180.
[24] Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, et al. YY1 Is a Structural Regulator of Enhancer-Promoter Loops. Cell 2017;171:1573-1588.e28. https://doi.org/10.1016/j.cell.2017.11.008.
[25] Han J, Meng J, Chen S, Wang X, Yin S, Zhang Q, et al. YY1 Complex Promotes Quaking Expression via Super-Enhancer Binding during EMT of Hepatocellular Carcinoma. Cancer Res 2019;79:1451–64. https://doi.org/10.1158/0008-5472.CAN-18-2238.
[26] Wang J, Wu X, Wei C, Huang X, Ma Q, Huang X, et al. YY1 Positively Regulates Transcription by Targeting Promoters and Super-Enhancers through the BAF Complex in Embryonic Stem Cells. Stem Cell Rep 2018;10:1324–39. https://doi.org/10.1016/j.stemcr.2018.02.004.
[27] Beagan JA, Duong MT, Titus KR, Zhou L, Cao Z, Ma J, et al. YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment. Genome Res 2017;27:1139–52. https://doi.org/10.1101/gr.215160.116.
[28] ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:57–74. https://doi.org/10.1038/nature11247.
[29] Cai Y, González JV, Liu Z, Huang T. Computational systems biology methods in molecular biology, chemistry biology, molecular biomedicine, and biopharmacy. BioMed Res Int 2014;2014:746814. https://doi.org/10.1155/2014/746814.
[30] Allfrey VG, Faulkner R, Mirsky AE. ACETYLATION AND METHYLATION OF HISTONES AND THEIR POSSIBLE ROLE IN THE REGULATION OF RNA SYNTHESIS. Proc Natl Acad Sci U S A 1964;51:786–94. https://doi.org/10.1073/pnas.51.5.786.
[31] Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev 2011;25:2227–41. https://doi.org/10.1101/gad.176826.111.
[32] Zhang L, Xue G, Liu J, Li Q, Wang Y. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data. BMC Genomics 2018;19:914. https://doi.org/10.1186/s12864-018-5278-5.
[33] Cheng C, Gerstein M. Modeling the relative relationship of transcription factor binding and histone modifications to gene expression levels in mouse embryonic stem cells. Nucleic Acids Res 2012;40:553–68. https://doi.org/10.1093/nar/gkr752.
[34] Henikoff S, Smith MM. Histone variants and epigenetics. Cold Spring Harb Perspect Biol 2015;7:a019364. https://doi.org/10.1101/cshperspect.a019364.
[35] Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 2007;17:877–85. https://doi.org/10.1101/gr.5533506.
[36] Song L, Crawford GE. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc 2010;2010:pdb.prot5384. https://doi.org/10.1101/pdb.prot5384.
[37] Minnoye L, Marinov GK, Krausgruber T, Pan L, Marand AP, Secchia S, et al. Chromatin accessibility profiling methods. Nat Rev Methods Primer 2021;1:10. https://doi.org/10.1038/s43586-020-00008-9.
[38] Cui K, Zhao K. Genome-wide approaches to determining nucleosome occupancy in metazoans using MNase-Seq. Methods Mol Biol Clifton NJ 2012;833:413–9. https://doi.org/10.1007/978-1-61779-477-3_24.
[39] Zhao Y, Schaafsma E, Cheng C. Applications of ENCODE data to Systematic Analyses via Data Integration. Curr Opin Syst Biol 2018;11:57–64. https://doi.org/10.1016/j.coisb.2018.08.010.
[40] McGinty RK, Tan S. Nucleosome structure and function. Chem Rev 2015;115:2255–73. https://doi.org/10.1021/cr500373h.
[41] Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 2016;44:W160-165. https://doi.org/10.1093/nar/gkw257.
[42] Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, et al. Ensembl 2021. Nucleic Acids Res 2021;49:D884–91. https://doi.org/10.1093/nar/gkaa942.
[43] Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinforma Oxf Engl 2011;27:1017–8. https://doi.org/10.1093/bioinformatics/btr064.
[44] Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et al. JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 2020;48:D87–92. https://doi.org/10.1093/nar/gkz1001.
[45] Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res 2003;31:374–8. https://doi.org/10.1093/nar/gkg108.
[46] Liu Q, Xia F, Yin Q, Jiang R. Chromatin accessibility prediction via a hybrid deep convolutional neural network. Bioinforma Oxf Engl 2018;34:732–8. https://doi.org/10.1093/bioinformatics/btx679.
[47] Yu G, Wang L-G, He Q-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinforma Oxf Engl 2015;31:2382–3. https://doi.org/10.1093/bioinformatics/btv145.