The application of sustainable manufacturing technologies is the new challenge faced by enterprises, industries, and researchers under the background of supporting carbon peak and carbon neutral. This paper studies how to reduce the energy consumption of holes machining through optimizing tool path and cutting parameters simultaneously. The integrated optimization methodology can further reduce the energy consumption comparing with optimizing the tool path or cutting parameters separately. Firstly, the energy model of holes machining is established based on machine tools’ energy composition, tool path planning, and process parameters. Due to tool path planning as air cutting process has big relationship with reducing energy, especially for holes group with a big proportion in the whole process. The tool path of holes processing is optimized by the improved ant colony algorithm to solve the issue considering the distance from one hole to the next hole. Based on this optimized path, a multi-objective optimization model for hole cutting parameters is established, considering the spindle speed and feed rate as the optimization variables and machining time, energy consumption, and surface roughness as the objective function. The non-dominated sorting genetic algorithm (NSGA-Ⅱ) is employed to solve the multi-objective optimization problem of holes machining. The case study with 50 holes is used to testify the application of the proposed method to provide the practical energy efficiency strategy for holes group or multi-hole parts on CNC machines assisting in achieving sustainable production in manufacturing sectors.