1. Shang, T., Si, D., Zhang, D., Liu, X., Zhao, L., Hu, C., Fu, Y., & Zhang, R. (2014). Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation. BMC Biotechnology, 17(1), 311-316.
2. Calik, P., Bayraktar, E., Inankur, B., Soyaslan, E. S., Sahin, M., Taspinar, H., & Ozdamar, T. H. (2010). Influence of pH on recombinant human growth hormone production by Pichia pastoris. Journal of Chemical Technology and Biotechnology, 85(12), 1628-1635.
3. Wang, J., Wu, Z., Zhang, T., Wang, Y., & Yang, B. (2019). High-level expression of Thermomyces dupontii thermophilic lipase in Pichia pastoris via combined strategies. 3 Biotech, 9(2), 1-9.
4. Su, X., Geng, X., Fu, M., Wu, Y., Yin, L., Zhao, F., & Chen, W. (2017). High-level expression and purification of a Mollusca endoglucanase from Ampullaria crossean in Pichia pastoris. Protein Expression & Purification, 139, 8-13.
5. Yu, Y., Zhou, X., Wu, S., Wei, T., & Yu, L. (2014). High-yield production of the human lysozyme by Pichia pastoris SMD1168 using response surface methodology and high-cell-density fermentation. Electronic Journal of Biotechnology, 17(6), 311-316.
6. Zhang, W., Bevins, M. A., Plantz, B. A., Smith, L. A., & Meagher, M. M. (2000). Modeling pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain fragment C of botulinum neurotoxin, serotype A. Biotechnology and Bioengineering, 70(1), 1-8.
7. Kupcsulik, B., Sevella, B., Ballagi, A., & Kozma, J. (2001). Evaluation of three methanol feed strategies for recombinant pichia pastoris muts fermentation. Acta Alimentaria, 30(1), 99-111.
8. Gao, M., Dong, S., Yu, R., Wu, J., Zheng, Z., Shi, Z., & Zhan, X. (2011). Improvement of ATP regeneration efficiency and operation stability in porcine interferon-α production by Pichia pastoris under lower induction temperature. Korean Journal of Chemical Engineering, 28(6), 1412-1419.
9. Gao, M., Li, Z., Yu, R., Wu, J., Zheng, Z., Shi, Z., Zhan, X., & Lin, C. (2012). Methanol/sorbitol co-feeding induction enhanced porcine interferon-α production by P. pastoris associated with energy metabolism shift. Bioprocess and Biosystems Engineering, 35(7), 1125-1136.
10. Gellissen, G. (2000). Heterologous protein production in methylotrophic yeasts. Applied Microbiology and Biotechnology, 54(6), 741-750.
11. Barrigón, J. M., Montesinos, J. L., & Valero, F. (2013). Searching the best operational strategies for Rhizopus oryzae lipase production in Pichia pastoris Mut+ phenotype: Methanol limited or methanol non-limited fed-batch cultures? Biochemical Engineering Journal, 75(1), 47-54.
12. Dan, W., Chu, J., Hao, Y., Wang, Y., Zhuang, Y., & Zhang, S. (2011). High efficient production of recombinant human consensus interferon mutant in high cell density culture of Pichia pastoris using two phases methanol control. Process Biochemistry, 46(8), 1663-1669.
13. Landolfo, S., Politi, H., Angelozzi, D., & Mannazzu, I. (2008). ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochimica et Biophysica Acta-General Subjects, 1780(6), 892-898.
14. Ribeiro, T. P., Fernandes, C., Melo, K. V., Ferreira, S. S., & Horn, A. (2015). Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Free Radical Biology and Medicine, 80, 67-76.
15. Qiu, Z., Liu, X., Tian, X., & Yue, M. (2008). Effects of CO2 laser pretreatment on drought stress resistance in wheat. Journal of Photochemistry and Photobiology B: Biology, 90(1), 17-25.
16. Vanz, A. L., Lünsdorf, H., Adnan, A., Nimtz, M., Gurramkonda, C., Khanna, N., & Rinas, U. (2012). Physiological response of Pichia pastoris GS115 to methanol-induced high level production of the Hepatitis B surface antigen: catabolic adaptation, stress responses, and autophagic processes. Microbial Cell Factories, 11(1), 103-113.
17. Haynes, C. M., Titus, E. A., & Cooper, A. A. (2004). Degradation of misfolded proteins prevents er-derived oxidative stress and cell death. Molecular Cell, 15(5), 767-776.
18. Schwarzhans, J., Luttermann, T., Geier, M., Kalinowski, J., & Friehs, K. (2017). Towards systems metabolic engineering in Pichia pastoris. Biotechnology Advances: An International Review Journal, 35(6), 681-710.
19. Lan, D., Qu, M., Yang, B., & Wang, Y. (2016). Enhancing production of lipase MAS1 from marine Streptomyces sp. strain in Pichia pastoris by chaperones co-expression. Electronic Journal of Biotechnology, 22(4), 62-67.
20. Yuan, D. Lan, D., Xin, R., Yang, B., & Wang, Y. (2016). Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007. Biotechnology & Applied Biochemistry, 63(1), 41-50.
21. Li, H., & Xia, Y. (2019). High-yield production of spider short-chain insecticidal neurotoxin Tx4(6–1) in Pichia pastoris and bioactivity assays in vivo. Protein Expression and Purification, 154, 66-73.
22. Zhang, X., Ai, Y., Xu, Y., & Yu, X. (2019). High-level expression of Aspergillus niger lipase in Pichia pastoris: Characterization and gastric digestion in vitro. Food chemistry, 247, 305-313.
23. Sinha, J., Plantz, B. A., Inan, M., & Meagher, M. M. (2010). Causes of proteolytic degradation of secreted recombinant proteins produced in methylotrophic yeast Pichia pastoris: case study with recombinant ovine interferon-tau. Biotechnology and bioengineering, 89(1), 102-112.
24. Liu, T., Zhu, L., Wang, J., Wang, J., Zhang, J., Sun, X., & Zhang, C. (2015). Biochemical toxicity and DNA damage of imidazolium-based ionic liquid with different anions in soil on Vicia faba seedlings. Scientific reports, 5(1), 18444-18453.
25. Zepeda, A. B., Figueroa, C. A., Pessoa, A., & Farías, J. G. (2018). Free fatty acids reduce metabolic stress and favor a stable production of heterologous proteins in Pichia pastoris. Brazilian journal of microbiology, 49(4), 856-864.
26. Livak, K., & Schmittgen, T. (2000). Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△Ct method. Methods, 25(4), 402-408.
27. Zhang, W. Potter, K. J. H., Plantz, B. A., Schlegel, V. L., Smith, L. A., & Meagher, M. M. (2003). Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement. Journal of industrial microbiology & biotechnology, 30(4), 210-215.
28. Rebnegger, C., Vos, T., Graf, A. B., Valli, M., Pronk, J. T., Daran-Lapujade, P. A. S., & Mattanovicha, D. (2016). Pichia Pastoris exhibits high viability and a low maintenance energy requirement at near-zero specific growth rates. Applied & Environmental Microbiology, 82(15), 4570-4583.
29. Sinha, J., Plantz, B. A., Zhang, W., Gouthro, M., Schlegel, V., Liu, C. P., & Meagher, M. M. (2003). Improved production of recombinant ovine interferon-τ by Mut+ strain of Pichia pastoris using an optimized methanol feed profile. Biotechnology Progress, 19(3), 794-802.
30. Rahimi, A., Hosseini, S. N., Jauidanbardan, A., & Khatami, M. (2019). Continuous fermentation of recombinant Pichia pastoris Mut(+) producing HBsAg: Optimizing dilution rate and determining strain-specific parameters. Food & Bioproducts Processing, 118(part C), 248-257.
31. Wu, D., Zhu, H., Chu, J., & Wu, J. (2019). N-acetyltransferase co-expression increases α-glucosidase expression level in Pichia pastoris. Journal of biotechnology, 289, 26-30.
32. Lee, J., Won, Y., Park, K., Lee, M., Tachibana, H., Yamada, K., & Seo, K. (2012). Celastrol inhibits growth and induces apoptotic cell death in melanoma cells via the activation ROS-dependent mitochondrial pathway and the suppression of PI3K/AKT signaling. Apoptosis, 17(12), 1275-1286.
33. Costa, V. M. V., Amorim, M. A., Quintanilha, A., & Moradas-Ferreira, P. (2002). Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radical Biology and Medicine, 33(11), 1507-1515.
34. Halliwell, B., & Gutteridge, J. M. C. (1985). Free radicals in biology and medicine. Fifth edn. Oxford, United Kingdom: Oxford University Press.
35. Fahey, C. R. (2001). Novel Thiols of Prokaryotes. Annual Review of Microbiology, 55, 333-356.
36. Delic, M., Rebnegger, C., Wanka, F., Puxbaum, V., Haberhauer-Troyer, C., Hann, S., Kollensperger, G., Mattanovich, D., & Gasser, B. (2012). Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radical Biology and Medicine, 52(9), 2000-2012.
37. Tessoulin, B., Descamps, G., Moreau, P., Maiga, S., Lode, L., Godon, C., Marionneau-Lambot, S., Oullier, T., Le, G. S., Amiot, M., & Pellat-Deceunynck, C. (2014). PRIMA-1Met induces myeloma cell death independent of p53 by impairing the GSH/ROS balance. Blood. 124(10), 1626-1636.
38. Liu, Z., Zhang, M., Han, X., Xu, H., Zhang, B., Yu, Q., & Li, M. (2016). TiO2 nanoparticles cause cell damage independent of apoptosis and autophagy by impairing the ROS-scavenging system in Pichia pastoris. Chemico-Biological Interactions, 252, 9-18.