Mosquito collection and rearing
Laboratory-reared mosquitoes
Aedes albopictus eggs were collected from Hammond Island, Torres Strait, Australia in June 2016 and used to derive a stable laboratory-maintained colony at the quarantine facility in Queensland Medical Research Institute (QIMR) Berghofer. The species was first noted on the Torres Strait islands of Australia in 2005 and has since facilitated some minor dengue outbreaks in that region [24]. Larvae hatched from that colony were reared in trays (35 × 15 cm) of de-chlorinated water kept at 27°C and 70% humidity. Larvae were fed with ground fish food ad libitum (Tetramin fish food flakes; Blacksburg, VA) and pupae were removed to round containers (9 cm diameter, 130 mls water). Emerging females were transferred daily to cages and provided with 10% sucrose ad libitum and maintained at 27ºC.
Adults used for NIRS analysis were killed 2, 5, 8, 12 and 15 days post-emergence. Individuals of the same age from two different generations were pooled to include possible variations in laboratory rearing conditions. Mosquitoes were anaesthetised with CO2 and placed in individual 1 mL tubes containing RNAlater® (Ambion, TX, USA), a standard protocol for NIRS characterization [25]. Tween-20 (0.1% v/v) was added to the RNAlater® to reduce surface tension and allow RNAlater® to fully penetrate the mosquito. Sample tubes were maintained at room temperature for 24h. The mosquitoes were then preserved at -20°C until spectral collection (< 14 days later). The total number of mosquitoes collected is listed in Table 1.
“Field-derived” mosquitoes
The term “field-derived” is used to describe mosquitoes with an origin that is more representative of the field than of the laboratory. They were collected as pupae from a natural habitat (a productive rainwater tank) on Hammond Island, Torres Strait during March 2018. This site is also the origin of the material used to derive the 2016 laboratory colony (see above). Pupae emerged in standard rearing cages (60 × 60 × 60 cm, Bugdorm, Megaview, Taiwan) maintained outdoors under ambient conditions. Adults were aspirated from the cages when they were 1, 7 or 14 days old, immobilized by cold (4oC) and placed in RNAlater® with 0.1% (v/v) of Tween-20 at -20°C until ready for shipping to QIMR Berghofer.
Mosquito scanning using near-infrared spectroscopy
Preserved, frozen mosquitoes were defrosted at room temperature and excess RNAlater® removed by placing specimens on paper towelling. A Spectralon plate was used for spectral background collection. Individual mosquitoes were placed on the Spectralon plate laterally, and the head and thorax were scanned using the LabSpec 5000 NIR spectrometer (Malvern Panalytical, Longmont, CO, USA). NIR spectra were obtained with an attached bifurcated fiber-optic probe that is approximately 2.4 mm above the Spectralon plate; scanning an area of approximately 2 mm. Spectral data was recorded in the 350-2500 nm region. Each spectrum was built using an average of 30 scans at a sampling resolution of 3 nm. Spectral data were collected using RS3 v6.4.3 (Malvern Panalytical, Longmont, CO, USA). Reflectance (R) is converted to absorbance (log 1/R) through RS3 prior to analyses.
Data analysis
Estimating mosquito age in days
Analyses were performed within the wavelengths of 700 to 2350 nm to disregard background noise at the start and end of the spectra, and any colour differences in mosquitoes (detected at < 700 nm). PLS regression was used to convert spectral data into predictive models of mosquito age (in days). Previous mosquito NIRS studies have used GRAMS IQ software (Thermo Scientific, MA, USA) to conduct the PLS analysis. GRAMS IQ uses a “leave-one-out” method for internal cross-validation where one sample is taken from the calibration set and the remaining samples are used to develop an equation that would predict that removed sample (therefore for each iteration the model is tested against a single data point). This process is repeated for all samples to create a predictive regression model (calibration model). The whole “leave-one-out” method is then repeated varying the number of PLS components (factors) and the best model selected [2, 13, 26] by choosing the number of components that maximises accuracy whilst trying to minimise over-fitting (inclusion of too many components results in models that fit the sampled data perfectly but that fail to predict new data). This involves subjectively deciding when increasing the number of components starts to have a minimal impact on cross-validation accuracy. Here we repeat the methods of the past (leave-one-out internal cross validation and selecting the number of components based on the correct classification rates of the calibration and prediction sets) and refer to this method as “Standard PLS”.
An alternative approach for the development of predictive models whilst reducing overfitting is to split the dataset into three for training, validation and testing [27]. Here we use 50% of the sample for training (fitting the model to samples of known age using different numbers of PLS components), 25% for validation (selecting an optimum number of components that effectively predict another subset of known samples) and 25% to the test dataset (evaluating the final model against a blinded sub set of data). This process is repeated 100 times, each time randomly resampling the original dataset to generate different training, validation and testing datasets so that no model is validated or tested against data used in its fitting. The overall accuracy of this set of models is then reported as the mean accuracy (as measured by the root-mean-square deviation, RMSD) of the 100 different models. This averaging is necessary in order to reduce sampling noise generated by the resampling process and obtain an unbiased estimate of the error (i.e. if only a single randomisation was used accuracy could be much higher or lower by chance depending on data split). Here the number of components selected during the validation exercise (and used in all 100 models) is the lowest number of components that permits an average error (RMSD) within 0.5 days of the best fitting model. This value was arbitrarily selected to be a compromise between accuracy and generalizability (further reducing overfitting). This resampling procedure and selection of the number of components is referred to as “resampling PLS” and has been used to optimise models for predicting the presence of malaria parasites in mosquitoes [28]. Results are shown comparing the standard error of the predictions with the true age of the mosquito (RMSD). To allow a direct comparison with Standard PLS, RMSD estimates for Resampling PLS were calculated on estimates of individual mosquito age calculated from the mean of the 100 randomisations using the training/validation/test dataset. The Resampling PLS method was written for these analyses in R [29] and available from https://github.com/pmesperanca/mlevcm.
Mathematical pre-treatment of spectra may reduce noise and increase the ability of NIRS to differentiate between mosquitoes with different characteristics. To investigate whether the accuracy of the standard PLS models could be improved by pre-processing techniques we examined standard normal variate (SNV), mean normalizing, and detrend-SNV methods to minimize spectral distortion due to scattering. We used second derivative Savitzky-Golay (SG) filtering to remove baseline noise [30, 31].
Classifying mosquitoes as young and old
Previous NIRS studies have estimated mosquito age in days as a continuous variable and then classified mosquitoes according to whether this age estimate is above or below a pre-defined threshold (i.e. > or < X days old; [4, 5, 6]). Here we use a binomial logistic regression framework to classify mosquitoes as young or old using the same resampling PLS framework outlined above [27]. An 8-day threshold is used to differentiate between young and old mosquitoes as it was the median age of mosquitoes collected thus allowing the calibration dataset to be evenly balanced between outcomes. Misclassification rates (the proportion of test observations incorrectly classified) were used to estimate the optimal boundary threshold (the value of the linear predictor differentiating between age classes), with sensitivity, specificity and accuracy determined using equations by Milali et al. [32]. Overall accuracy for resampling PLS is assessed by comparing the area under the receiver operating characteristic (ROC) curve (AUC). This is a graphical tool commonly used to illustrate the diagnostic accuracy of binary classification systems, with an AUC of 0.5 signifying the ability of NIRS to classify old and young mosquitoes is no better than chance whilst a value of 1 indicates perfect accuracy. The model with the minimum number of components that is within 0.01 of the model with the highest AUC is selected. Estimates of whether a mosquito is classified as young or old are made by averaging prediction of the linear predictor from 100 randomisations and comparing that to the average cut-off (in the linear predictor space) for all mosquitoes to enable a fair assessment of the quality of the model in a real-life setting [27].
Analysis of spectra
Potential outliers in the data were identified and removed using Hotelling T2 statistics, where samples positioned outside of a 95% confidence interval ellipse and consisted extreme differences in spectra are considered outliers. Outliers were not used in this analysis because they are considered data points that are not representative of the age-grading spectral information used for the development of a principal component analysis (PCA) model. Ten laboratory samples and nine field-derived samples were removed as outliers. PCA was then used to identify spectral differences and clustering within the datasets. Loading plots generated from PCA were analysed to identify key absorbance peaks that may correspond to the age grading of mosquitoes. PCA analysis was conducted in Unscrambler X (v. 10.5.1).