(1) Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. Characterization of Individual Polynucleotide Molecules Using a Membrane Channel. Proc. Natl. Acad. Sci. U.S.A. 1996, 93 (24), 13770–13773. https://doi.org/10.1073/pnas.93.24.13770.
(2) van Dorp, S.; Keyser, U. F.; Dekker, N. H.; Dekker, C.; Lemay, S. G. Origin of the Electrophoretic Force on DNA in Solid-State Nanopores. Nature Physics 2009, 5 (5), 347–351. https://doi.org/10.1038/nphys1230.
(3) Kesselheim, S.; Müller, W.; Holm, C. Origin of Current Blockades in Nanopore Translocation Experiments. Phys. Rev. Lett. 2014, 112 (1), 018101. https://doi.org/10.1103/PhysRevLett.112.018101.
(4) Keyser, U. F.; Koeleman, B. N.; van Dorp, S.; Krapf, D.; Smeets, R. M. M.; Lemay, S. G.; Dekker, N. H.; Dekker, C. Direct Force Measurements on DNA in a Solid-State Nanopore. Nature Physics 2006, 2 (7), 473–477. https://doi.org/10.1038/nphys344.
(5) Haque, F.; Li, J.; Wu, H.-C.; Liang, X.-J.; Guo, P. Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA. Nano Today 2013, 8 (1), 56–74. https://doi.org/10.1016/j.nantod.2012.12.008.
(6) Dekker, C. Solid-State Nanopores. Nature Nanotechnology 2007, 2 (4), 209–215. https://doi.org/10.1038/nnano.2007.27.
(7) Chang, H.; Kosari, F.; Andreadakis, G.; Alam, M. A.; Vasmatzis, G.; Bashir, R. DNA-Mediated Fluctuations in Ionic Current through Silicon Oxide Nanopore Channels. Nano Lett 2004, 4 (8), 1551–1556. https://doi.org/10.1021/nl049267c.
(8) Smeets, R. M. M.; Keyser, U. F.; Krapf, D.; Wu, M.-Y.; Dekker, N. H.; Dekker, C. Salt Dependence of Ion Transport and DNA Translocation through Solid-State Nanopores. Nano Lett. 2006, 6 (1), 89–95. https://doi.org/10.1021/nl052107w.
(9) Wang, V.; Ermann, N.; Keyser, U. F. Current Enhancement in Solid-State Nanopores Depends on Three-Dimensional DNA Structure. Nano Lett. 2019, 19 (8), 5661–5666. https://doi.org/10.1021/acs.nanolett.9b02219.
(10) Steinbock, L. J.; Lucas, A.; Otto, O.; Keyser, U. F. Voltage-Driven Transport of Ions and DNA through Nanocapillaries. Electrophoresis 2012, 33 (23), 3480–3487. https://doi.org/10.1002/elps.201100663.
(11) Ho, C.; Qiao, R.; Heng, J. B.; Chatterjee, A.; Timp, R. J.; Aluru, N. R.; Timp, G. Electrolytic Transport through a Synthetic Nanometer-Diameter Pore. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (30), 10445–10450. https://doi.org/10.1073/pnas.0500796102.
(12) Martins, D. C.; Chu, V.; Conde, J. P. The Effect of the Surface Functionalization and the Electrolyte Concentration on the Electrical Conductance of Silica Nanochannels. Biomicrofluidics 2013, 7 (3), 034111. https://doi.org/10.1063/1.4811277.
(13) Stein, D.; Kruithof, M.; Dekker, C. Surface-Charge-Governed Ion Transport in Nanofluidic Channels. Phys. Rev. Lett. 2004, 93 (3), 035901. https://doi.org/10.1103/PhysRevLett.93.035901.
(14) Karnik, R.; Castelino, K.; Fan, R.; Yang, P.; Majumdar, A. Effects of Biological Reactions and Modifications on Conductance of Nanofluidic Channels. Nano Lett. 2005, 5 (9), 1638–1642. https://doi.org/10.1021/nl050966e.
(15) Siwy, Z.; Kosińska, I. D.; Fuliński, A.; Martin, C. R. Asymmetric Diffusion through Synthetic Nanopores. Phys. Rev. Lett. 2005, 94 (4), 048102. https://doi.org/10.1103/PhysRevLett.94.048102.
(16) Fan, R.; Karnik, R.; Yue, M.; Li, D.; Majumdar, A.; Yang, P. DNA Translocation in Inorganic Nanotubes. Nano Lett. 2005, 5 (9), 1633–1637. https://doi.org/10.1021/nl0509677.
(17) Cui, S. Current Blockade in Nanopores in the Presence of Double-Stranded DNA and the Microscopic Mechanisms. J Phys Chem B 2010, 114 (5), 2015–2022. https://doi.org/10.1021/jp909564d.
(18) Cui, S. T. Counterion-Hopping along the Backbone of Single-Stranded DNA in Nanometer Pores: A Mechanism for Current Conduction. Phys. Rev. Lett. 2007, 98 (13), 138101. https://doi.org/10.1103/PhysRevLett.98.138101.
(19) Smeets, R. M. M.; Keyser, U. F.; Dekker, N. H.; Dekker, C. Noise in Solid-State Nanopores. Proceedings of the National Academy of Sciences 2008, 105 (2), 417–421. https://doi.org/10.1073/pnas.0705349105.
(20) Zhang, Y.; Wu, G.; Si, W.; Ma, J.; Yuan, Z.; Xie, X.; Liu, L.; Sha, J.; Li, D.; Chen, Y. Ionic Current Modulation from DNA Translocation through Nanopores under High Ionic Strength and Concentration Gradients. Nanoscale 2017, 9 (2), 930–939. https://doi.org/10.1039/C6NR08123A.
(21) Luan, B.; Aksimentiev, A. Control and Reversal of the Electrophoretic Force on DNA in a Charged Nanopore. J. Phys.: Condens. Matter 2010, 22 (45), 454123. https://doi.org/10.1088/0953-8984/22/45/454123.
(22) Zhan, L.; Zhang, Y.; Si, W.; Sha, J.; Chen, Y. Detection and Separation of Single-Stranded DNA Fragments Using Solid-State Nanopores. The Journal of Physical Chemistry Letters 2021, 12, 6469–6477.
(23) Yang, H.; Li, Z.; Si, W.; Lin, K.; Ma, J.; Li, K.; Sun, L.; Sha, J.; Chen, Y. Identification of Single Nucleotides by a Tiny Charged Solid-State Nanopore. The Journal of Physical Chemistry B 2018, 122 (32), 7929–7935.
(24) Zhang, Y.; Zhao, J.; Si, W.; Kan, Y.; Xu, Z.; Sha, J.; Chen, Y. Electroosmotic Facilitated Protein Capture and Transport through Solid‐State Nanopores with Diameter Larger than Length. Small Methods 2020, 4 (11), 1900893.
(25) Karawdeniya, B. I.; Bandara, Y. N. D.; Nichols, J. W.; Chevalier, R. B.; Dwyer, J. R. Surveying Silicon Nitride Nanopores for Glycomics and Heparin Quality Assurance. Nature communications 2018, 9 (1), 1–8.
(26) Ermann, N.; Hanikel, N.; Wang, V.; Chen, K.; Weckman, N. E.; Keyser, U. F. Promoting Single-File DNA Translocations through Nanopores Using Electro-Osmotic Flow. The Journal of chemical physics 2018, 149 (16), 163311.
(27) Bandara, Y. N. D.; Saharia, J.; Karawdeniya, B. I.; Hagan, J. T.; Dwyer, J. R.; Kim, M. J. Beyond Nanopore Sizing: Improving Solid-State Single-Molecule Sensing Performance, Lifetime, and Analyte Scope for Omics by Targeting Surface Chemistry during Fabrication. Nanotechnology 2020, 31 (33), 335707.
(28) Levy, A.; de Souza, J. P.; Bazant, M. Z. Breakdown of Electroneutrality in Nanopores. Journal of Colloid and Interface Science 2020, 579, 162–176.
(29) Subramaniam, A.; Chen, J.; Jang, T.; Geise, N. R.; Kasse, R. M.; Toney, M. F.; Subramanian, V. R. Analysis and Simulation of One-Dimensional Transport Models for Lithium Symmetric Cells. Journal of The Electrochemical Society 2019, 166 (15), A3806.
(30) Steinbock, L. J.; Bulushev, R. D.; Krishnan, S.; Raillon, C.; Radenovic, A. DNA Translocation through Low-Noise Glass Nanopores. ACS Nano 2013, 7 (12), 11255–11262. https://doi.org/10.1021/nn405029j.
(31) J. Steinbock, L.; Krishnan, S.; D. Bulushev, R.; Borgeaud, S.; Blokesch, M.; Feletti, L.; Radenovic, A. Probing the Size of Proteins with Glass Nanopores. Nanoscale 2014, 6 (23), 14380–14387. https://doi.org/10.1039/C4NR05001K.
(32) Steinbock, L. J.; Otto, O.; Chimerel, C.; Gornall, J.; Keyser, U. F. Detecting DNA Folding with Nanocapillaries. Nano Lett. 2010, 10 (7), 2493–2497. https://doi.org/10.1021/nl100997s.
(33) DeSorbo, W. Ultraviolet Effects and Aging Effects on Etching Characteristics of Fission Tracks in Polycarbonate Film. Nuclear Tracks 1979, 3 (1), 13–32. https://doi.org/10.1016/0191-278X(79)90026-X.
(34) Ai, Y.; Zhang, M.; Joo, S. W.; Cheney, M. A.; Qian, S. Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores. J. Phys. Chem. C 2010, 114 (9), 3883–3890. https://doi.org/10.1021/jp911773m.
(35) Behrens, S. H.; Grier, D. G. The Charge of Glass and Silica Surfaces. J. Chem. Phys. 2001, 115 (14), 6716–6721. https://doi.org/10.1063/1.1404988.
(36) Sohi, A. N.; Beamish, E.; Tabard-Cossa, V.; Godin, M. DNA Capture by Nanopore Sensors under Flow. Anal. Chem. 2020, 92 (12), 8108–8116. https://doi.org/10.1021/acs.analchem.9b05778.
(37) Charron, M.; Briggs, K.; King, S.; Waugh, M.; Tabard-Cossa, V. Precise DNA Concentration Measurements with Nanopores by Controlled Counting. Anal. Chem. 2019, 91 (19), 12228–12237. https://doi.org/10.1021/acs.analchem.9b01900.
(38) Wanunu, M.; Morrison, W.; Rabin, Y.; Grosberg, A. Y.; Meller, A. Electrostatic Focusing of Unlabelled DNA into Nanoscale Pores Using a Salt Gradient. Nature Nanotechnology 2010, 5 (2), 160–165. https://doi.org/10.1038/nnano.2009.379.
(39) Grosberg, A. Y.; Rabin, Y. DNA Capture into a Nanopore: Interplay of Diffusion and Electrohydrodynamics. J. Chem. Phys. 2010, 133 (16), 165102. https://doi.org/10.1063/1.3495481.
(40) Qiao, L.; Slater, G. W. Capture of Rod-like Molecules by a Nanopore: Defining an “Orientational Capture Radius.” J. Chem. Phys. 2020, 152 (14), 144902. https://doi.org/10.1063/5.0002044.
(41) Laohakunakorn, N.; Thacker, V. V.; Muthukumar, M.; Keyser, U. F. Electroosmotic Flow Reversal Outside Glass Nanopores. Nano Lett. 2015, 15 (1), 695–702. https://doi.org/10.1021/nl504237k.
(42) Ferree, S.; Blanch, H. W. Electrokinetic Stretching of Tethered DNA. Biophysical Journal 2003, 85 (4), 2539–2546. https://doi.org/10.1016/S0006-3495(03)74676-1.
(43) Plesa, C.; Verschueren, D.; Pud, S.; van der Torre, J.; Ruitenberg, J. W.; Witteveen, M. J.; Jonsson, M. P.; Grosberg, A. Y.; Rabin, Y.; Dekker, C. Direct Observation of DNA Knots Using a Solid-State Nanopore. Nature Nanotech 2016, 11 (12), 1093–1097. https://doi.org/10.1038/nnano.2016.153.
(44) Kumar Sharma, R.; Agrawal, I.; Dai, L.; Doyle, P. S.; Garaj, S. Complex DNA Knots Detected with a Nanopore Sensor. Nature Communications 2019, 10 (1), 4473. https://doi.org/10.1038/s41467-019-12358-4.
(45) Li, J.; Gershow, M.; Stein, D.; Brandin, E.; Golovchenko, J. A. DNA Molecules and Configurations in a Solid-State Nanopore Microscope. Nature Materials 2003, 2 (9), 611–615. https://doi.org/10.1038/nmat965.
(46) Storm, A. J.; Chen, J. H.; Zandbergen, H. W.; Dekker, C. Translocation of Double-Strand DNA through a Silicon Oxide Nanopore. Phys. Rev. E 2005, 71 (5), 051903. https://doi.org/10.1103/PhysRevE.71.051903.
(47) Comer, J.; Dimitrov, V.; Zhao, Q.; Timp, G.; Aksimentiev, A. Microscopic Mechanics of Hairpin DNA Translocation through Synthetic Nanopores. Biophysical Journal 2009, 96 (2), 593–608. https://doi.org/10.1016/j.bpj.2008.09.023.
(48) Chen, K.; Bell, N. A.; Kong, J.; Tian, Y.; Keyser, U. F. Direction-and Salt-Dependent Ionic Current Signatures for DNA Sensing with Asymmetric Nanopores. Biophysical journal 2017, 112 (4), 674–682.
(49) Lan, W.-J.; Kubeil, C.; Xiong, J.-W.; Bund, A.; White, H. S. Effect of Surface Charge on the Resistive Pulse Waveshape during Particle Translocation through Glass Nanopores. The Journal of Physical Chemistry C 2014, 118 (5), 2726–2734.
(50) Pedone, D.; Firnkes, M.; Rant, U. Data Analysis of Translocation Events in Nanopore Experiments. Analytical chemistry 2009, 81 (23), 9689–9694.
(51) Tivony, R.; Safran, S.; Pincus, P.; Silbert, G.; Klein, J. Charging Dynamics of an Individual Nanopore. Nature communications 2018, 9 (1), 1–8.
(52) Gupta, A.; Zuk, P. J.; Stone, H. A. Charging Dynamics of Overlapping Double Layers in a Cylindrical Nanopore. Physical review letters 2020, 125 (7), 076001.
(53) Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C. Slowing down DNA Translocation through a Nanopore in Lithium Chloride. Nano Lett. 2012, 12 (2), 1038–1044. https://doi.org/10.1021/nl204273h.
(54) Lee, S. H.; Rasaiah, J. C. Molecular Dynamics Simulation of Ion Mobility. 2. Alkali Metal and Halide Ions Using the SPC/E Model for Water at 25 °C. J. Phys. Chem. 1996, 100 (4), 1420–1425. https://doi.org/10.1021/jp953050c.
(55) Wang, P.; Zhang, L.; Xie, Y.; Wang, N.; Tang, R.; Zheng, W.; Jiang, X. Genome Editing for Cancer Therapy: Delivery of Cas9 Protein/SgRNA Plasmid via a Gold Nanocluster/Lipid Core–Shell Nanocarrier. Adv Sci (Weinh) 2017, 4 (11). https://doi.org/10.1002/advs.201700175.
(56) Raper, A. T.; Stephenson, A. A.; Suo, Z. Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9. J. Am. Chem. Soc. 2018, 140 (8), 2971–2984. https://doi.org/10.1021/jacs.7b13047.
(57) Lian, Z.; Chao, H.; Wang, Z.-G. Effects of Confinement and Ion Adsorption in Ionic Liquid Supercapacitors with Nanoporous Electrodes. ACS nano 2021.
(58) He, Y.; Tsutsui, M.; Scheicher, R. H.; Miao, X. S.; Taniguchi, M. Salt-Gradient Approach for Regulating Capture-to-Translocation Dynamics of DNA with Nanochannel Sensors. ACS Sens. 2016, 1 (6), 807–816. https://doi.org/10.1021/acssensors.6b00176.
1 Subramaniam, A. et al. Analysis and Simulation of One-Dimensional Transport Models for Lithium Symmetric Cells. Journal of The Electrochemical Society 166, A3806 (2019).