1. Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. U. S. A.102, 8245–8250 (2005).
2. Thomas, C. D. et al. Extinction risk from climate change. Nature427, 145–148 (2004).
3. Urban, M. C. Accelerating extinction risk from climate change. Science (80-. ).348, 571–573 (2015).
4. Gray, S. B. & Brady, S. M. Plant developmental responses to climate change. Dev. Biol.419, 64–77 (2016).
5. Sommer, J. H. et al. Projected impacts of Climate change on regional capacities for global plant species richness. Proc. R. Soc. B Biol. Sci.277, 2271–2280 (2010).
6. Linders, T. E. W. et al. Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J. Ecol.107, 2660–2672 (2019).
7. Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nat. |592, (2021).
8. Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ.733, (2020).
9. Wallingford, P. D. et al. Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. Nat. Clim. Chang.10, 398–405 (2020).
10. Van de Peer, Y., Ashman, T. L., Soltis, P. S. & Soltis, D. E. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell33, 11–26 (2021).
11. Madlung, A. Polyploidy and its effect on evolutionary success: Old questions revisited with new tools. Heredity (Edinb).110, 99–104 (2013).
12. Hahn, M. A., van Kleunen, M. & Müller-Schärer, H. Increased Phenotypic Plasticity to Climate May Have Boosted the Invasion Success of Polyploid Centaurea stoebe. PLoS One7, (2012).
13. Leitch, A. R. & Leitch, I. J. Genomic plasticity and the diversity of polyploid plants. Science (80-. ).320, 481–483 (2008).
14. Pandit, M. K., Pocock, M. J. O. & Kunin, W. E. Ploidy influences rarity and invasiveness in plants. J. Ecol.99, 1108–1115 (2011).
15. Te Beest, M. et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann. Bot.109, 19–45 (2012).
16. Lowry, E. & Lester, S. E. The biogeography of plant reproduction: Potential determinants of species’ range sizes. J. Biogeogr.33, 1975–1982 (2006).
17. Talent, N. & Dickinson, T. A. Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): Evolutionary inferences from flow cytometry of nuclear DNA amounts. Can. J. Bot.83, 1268–1304 (2005).
18. Zarrei, M., Stefanović, S. & Dickinson, T. A. Reticulate evolution in North American black-fruited hawthorns (Crataegus section Douglasia; Rosaceae): Evidence from nuclear ITS2 and plastid sequences. Ann. Bot.114, 253–269 (2014).
19. Martin, S. L. & Husband, B. C. Influence of phylogeny and ploidy on species ranges of North American angiosperms. J. Ecol.97, 913–922 (2009).
20. Johnson, A. L., Govindarajulu, R. & Ashman, T. L. Bioclimatic evaluation of geographical range in Fragaria (Rosaceae): Consequences of variation in breeding system, ploidy and species age. Bot. J. Linn. Soc.176, 99–114 (2014).
21. Naghiloo, S. & Vamosi, J. C. Correlates of extinction vulnerability in Canadian ’ s prairie ecoregion. Biodivers. Conserv. (2021) doi:10.1007/s10531-021-02206-7.
22. Hijmans, R. J. et al. Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum section Petota). Glob. Ecol. Biogeogr.16, 485–495 (2007).
23. Sheth, S. N., Morueta-Holme, N. & Angert, A. L. Determinants of geographic range size in plants. New Phytol.226, 650–665 (2020).
24. Rice, A. et al. The global biogeography of polyploid plants. Nat. Ecol. Evol.3, (2019).
25. Novikova, P. Y., Hohmann, N. & Peer, Y. Van De. ScienceDirect Polyploid Arabidopsis species originated around recent glaciation maxima. Curr. Opin. Plant Biol.42, 8–15.
26. Zozomová, J., Andrea, L., Marek, M. & Španiel, S. Pleistocene range disruption and postglacial expansion with secondary contacts explain the genetic and cytotype structure in the western Balkan endemic Alyssum austrodalmaticum ( Brassicaceae ). Plant Syst. Evol.306, 1–25 (2020).
27. Brochmann, C. et al. Polyploidy in arctic plants. (2015).
28. Li, W., Berlyn, G. P. & Ashton, P. M. S. Polyploids and their Structural and Physiological Characteristics Relative to Water Deficit in Betula papyrifera ( Betulaceae ) Author ( s ): Wan-Liang Li , Graeme P . Berlyn and P . Mark S . Ashton Published by : Wiley Stable URL : https://www.jstor.org/. 83, 15–20 (1996).
29. Lu, H. canadensis : Polyploidy drives cold tolerance differentiation . Polyploidization-driven differentiation of freezing tolerance in Solidago canadensis. (2020) doi:10.1111/pce.13745.
30. Yue, Y. et al. Autopolyploidy in Chrysanthemum cv . ‘ Gongju ’ Improved Cold Tolerance. 655–665 (2020).
31. Rao, S., Tian, Y., Xia, X., Li, Y. & Chen, J. Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. Hortic. Res. 1–18 (2020) doi:10.1038/s41438-020-0260-1.
32. Barringer, B. Polyploidy and self-fertilization in flowering plants. 94, 1527–1533 (2007).
33. Carmak, J. G. Asynchronous expression of duplicate genes in angiosperms may cause apomixis , bispory , tetraspory , and polyembryony. 51–94 (1997).
34. Herben, T., Suda, J. & Klimešová, J. Polyploid species rely on vegetative reproduction more than diploids : a re-examination of the old hypothesis. 341–349 (2017) doi:10.1093/aob/mcx009.
35. Talent, N. & Dickinson, T. A. The potential for ploidy level increases and decreases in Crataegus ( Rosaceae , The potential for ploidy level increases and decreases in Crataegus ( Rosaceae , Spiraeoideae , tribe Pyreae ). 85, 570–584 (2007).
36. Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol.97, 199–205 (2009).
37. Teriaeva, N. B. & Mukhin, E. I. Kholinergicheskie sinapsy assotsiativnoǐ visochnoǐ oblasti neokorteksa v realizatsii kognitivnykh funktsiǐ.Fiziologicheskii zhurnal imeni I.M. Sechenova / Rossiiskaia akademiia nauk vol. 79 (1993).
38. Kass, J. M. et al. Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol. Evol.9, 1151–1156 (2018).
39. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol.25, 1965–1978 (2005).
40. Phillips, S. B., Aneja, V. P., Kang, D. & Arya, S. P. Modelling and analysis of the atmospheric nitrogen deposition in North Carolina. Int. J. Glob. Environ. Issues6, 231–252 (2006).
41. Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models . Methods Ecol. Evol.5, 1198–1205 (2014).
42. Lawrence, D. M. et al. The CCSM4 land simulation, 1850-2005: Assessment of surface climate and new capabilities. J. Clim.25, 2240–2260 (2012).