The optimal planning and management of modern water resources depends highly on reliable and accurate runoff forecasting. Data preprocessing technology can provide new possibilities for improving the accuracy of runoff forecasting, when basic physical relationships cannot be captured using a single prediction model. Yet, few researches evaluated the performances of various data preprocessing technology in predicting monthly runoff time series so far. In order to fill this research gap, this paper investigates the potential of five data preprocessing techniques based on gated recurrent unit network (GRU) model in monthly runoff prediction, namely variational mode decomposition (VMD), wavelet packet decomposition (WPD), complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), extreme-point symmetric mode decomposition (ESMD), and singular spectrum analysis (SSA). In this study, the original monthly runoff data is first decomposed into a set of subcomponents using five data preprocessing methods; second, each component is predicted by developing an appropriate GRU model; finally, the forecasting results of different two-stage hybrid models are obtained by aggregating of forecast results of the corresponding subcomponents. Four performance metrics are employed as the evaluation benchmarks. The experimental results from two hydropower stations in China show that five data preprocessing techniques can attain satisfying prediction results, while VMD and WPD methods can yield better performance than CEEMDAN, ESMD and SSA in both training and testing periods in terms of four indexes. Indeed, it is significantly important to carefully determine an appropriate data preprocessing method according to the actual characteristics of the study area.