[1] Yurkov V, Jappe J, Vermeglio A (1996) Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol 62: 4195-4198. http://doi.org/ 10.1128/aem.62.11.4195-4198.1996
[2] Dantas G, Sommer MO, Oluwasegun RD, Church GM (2008) Bacteria subsisting on antibiotics. Science 320: 100-103. http://doi.org/10.1126/science.1155157
[3] Molina-Quiroz RC, Muñoz-Villagrán CM, De La Torre E, Tantaleán JC, Vásquez CC, Pérez-Donoso JM (2012) Enhancing the antibiotic antibacterial effect by sub lethal tellurite concentrations: tellurite and cefotaxime act synergistically in Escherichia coli. PLoS One 7: e35452. http://doi.org/10.1371/journal.pone.0035452
[4] Elías AO, Abarca MJ, Montes RA, Chasteen TG, Pérez-Donoso JM, Vásquez CC (2012) Tellurite enters Escherichia coli mainly through the PitA phosphate transporter. Microbiologyopen 1: 259-267. http://doi.org/10.1002/mbo3.26
[5] Turner RJ, Weiner JH, Taylor DE (1999) Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology (Reading) 145: 2549-2557. http://doi.org/10.1099/00221287-145-9-2549
[6] Turner RJ, Aharonowitz Y, Weiner JH, Taylor DE (2001) Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol 47: 33-40.
[7] Calderón IL, Elías AO, Fuentes EL, Pradenas GA, Castro ME, Arenas FA, Pérez JM, Vásquez CC (2009) Tellurite-mediated disabling of [4Fe-4S] clusters of Escherichia coli dehydratases. Microbiology (Reading) 155: 1840-1846. http://doi.org/10.1099/mic.0.026260-0
[8] Refsgaard HH, Tsai L, Stadtman ER (2000) Modifications of proteins by polyunsaturated fatty acid peroxidation products. Proc Natl Acad Sci U S A 97: 611-616. http://doi.org/10.1073/pnas.97.2.611
[9] Aradská J, Smidák R, Turkovičová L, Turňa J, Lubec G (2013) Proteomic differences between tellurite-sensitive and tellurite-resistant E. coli. PLoS One 8: e78010. http://doi.org/10.1371/journal.pone.0078010
[10] Morales EH, Pinto CA, Luraschi R, Muñoz-Villagrán CM, Cornejo FA, Simpkins SW, Nelson J, Arenas FA, Piotrowski JS, Myers CL, Mori H, Vásquez CC (2017) Accumulation of heme biosynthetic intermediates contributes to the antibacterial action of the metalloid tellurite. Nat Commun 8: 15320.
http://doi.org/10.1038/ncomms15320
[11] Tantaleán JC, Araya MA, Saavedra CP, Fuentes DE, Pérez JM, Calderón IL, Youderian P, Vásquez CC (2003) The Geobacillus stearothermophilus V iscS gene, encoding cysteine desulfurase, confers resistance to potassium tellurite in Escherichia coli K-12. J Bacteriol 185: 5831-5837. http://doi.org/10.1128/JB.185.19.5831-5837.2003
[12] Vrionis HA, Wang S, Haslam B, Turner RJ (2015) Selenite Protection of Tellurite Toxicity Toward Escherichia coli. Front Mol Biosci 2: 69. http://doi.org/10.3389/fmolb.2015.00069
[13] Anaganti N, Basu B, Gupta A, Joseph D, Apte SK (2015) Depletion of reduction potential and key energy generation metabolic enzymes underlies tellurite toxicity in Deinococcus radiodurans. Proteomics 15: 89-97. http://doi.org/10.1002/pmic.201400113
[14] Evans TG (2015) Considerations for the use of transcriptomics in identifying the 'genes that matter' for environmental adaptation. J Exp Biol 218: 1925-1935. http://doi.org/10.1242/jeb.114306
[15] Molina-Quiroz RC, Loyola DE, Díaz-Vásquez WA, Arenas FA, Urzúa U, Pérez-Donoso JM, Vásquez CC (2014) Global transcriptomic analysis uncovers a switch to anaerobic metabolism in tellurite-exposed Escherichia coli. Res Microbiol 165: 566-570. http://doi.org/10.1016/j.resmic.2014.07.003
[16] Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 DDCT method, Methods 2402-2408. http://doi.org/10.1007/s11033-008-9430-1
[17] Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461: 1234-1242. http://doi.org/10.1038/nature08403
[18] Cerretti DP, Dean D, Davis GR, Bedwell DM , Nomura M (1983) The spc ribosomal protein operon of Escherichia coli: sequence and cotranscription of the ribosomal protein genes and a protein export gene. Nucleic Acids Res 11: 2599-2616. http://doi.org/10.1093/nar/11.9.2599
[19] Li X, Lindahl L, Zengel JM (1996) Ribosomal protein L4 from Escherichia coli utilizes nonidentical determinants for its structural and regulatory functions. RNA 2: 24
[20] Zurawski G, Zurawski SM (1985) Structure of the Escherichia coli S10 ribosomal protein operon. Nucleic Acids Res 13: 4521-4526. http://doi.org/10.1093/nar/13.12.4521
[21] Oberto J, Bonnefoy E, Mouray E, Pellegrini O, Wikström PM, Rouvière-Yaniv J (1996) The Escherichia coli ribosomal protein S16 is an endonuclease. Mol Microbiol 19: 1319-1330. http://doi.org/10.1111/j.1365-2958.1996.tb02476.x
[22] Persson BC, Bylund GO, Berg DE, Wikström PM (1995) Functional analysis of the ffh-trmD region of the Escherichia coli chromosome by using reverse genetics. J Bacteriol 177: 5554-5560. http://doi.org/10.1128/jb.177.19.5554-5560.1995
[23] Yates JL, Nomura M (1980) E. coli ribosomal protein L4 is a feedback regulatory protein. Cell 21: 517-522. http://doi.org/10.1016/0092-8674(80)90489-4
[24] Zengel JM, Mueckl D, Lindahl L (1980) Protein L4 of the E. coli ribosome regulates an eleven gene r protein operon. Cell 21: 523-535. http://doi.org/10.1016/0092-8674(80)90490-0
[25] Singh D, Chang SJ, Lin PH, Averina OY, Kaberdin VR, Chao SL (2009) Regulation of ribonuclease E activity by the L4 ribosomal protein of Escherichia coli. Proc Natl Acad Sci U S A 106: 864-869. http://doi.org/10.1073/pnas.0810205106
[26] Jagannathan I, Culver GM (2003) Assembly of the central domain of the 30S ribosomal subunit: roles for the primary binding ribosomal proteins S15 and S8. J Mol Biol 330:373-383. http://doi.org/10.1016/s0022-2836(03)00586-2
[27] Vannice J, Gregory ST, Kamath D (2016) O'connor M. Alterations in ribosomal protein L19 that decrease the fidelity of translation. Biochimie 128-129: 122-126. http://doi.org/ 10.1016/j.biochi.2016.07.015
[28] Yonekura K, Maki-Yonekura S, Namba K (2013) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424: 643-650. http://doi.org/10.1038/nature01830
[29] Zhuang XY, Guo S, Li Z, Zhao Z, Kojima S, Homma M, Wang P, Lo CJ, Bai F (2020) Live-cell fluorescence imaging reveals dynamic production and loss of bacterial flagella. Mol Microbiol 114: 279-291. http://doi.org/10.1111/mmi.14511
[30] Mudge MC, Nunn BL, Firth E, Ewert M, Hales K, Fondrie WE, Noble WS, Toner J, Light B, Junge KA (2021) Subzero, saline incubations of Colwellia psychrerythraea reveal strategies and biomarkers for sustained life in extreme icy environments. Environ Microbiol 23:3840-3866. http://doi.org/10.1111/1462-2920.15485
[31] Fitzgerald D M, Bonocora RP, Wade JT (2014) Comprehensive mapping of the Escherichia coli flagellar regulatory network. PLoS Genet 10: e1004649 http://doi.org/10.1371/journal.pgen.1004649
[32] Akiba T, Yoshimura H, Namba K (1991) Monolayer crystallization of flagellar L-P rings by sequential addition and depletion of lipid. Science 252: 1544-1546. http://doi.org/10.1126/science.2047860
[33] Minamino T, Imada K (2015) The bacterial flagellar motor and its structural diversity. Trends Microbiol 23: 267-274. http://doi.org/10.1016/j.tim.2014.12.011
[34] Müller V, Jones CJ, Kawagishi I, Aizawa S, Macnab RM (1992) Characterization of the fliE genes of Escherichia coli and Salmonella typhimurium and identification of the FliE protein as a component of the flagellar hook-basal body complex. J Bacteriol 174: 2298-2304. http://doi.org/10.1128/jb.174.7.2298-2304.1992
[35] Yang SY, Schulz H (1983) The large subunit of the fatty acid oxidation complex from Escherichia coli is a multifunctional polypeptide. Evidence for the existence of a fatty acid oxidation operon (fad AB) in Escherichia coli. J Biol Chem 258: 9780-9785.
[36] Goss TJ, Datta P (1984) Escherichia coli K-12 mutation that inactivates biodegradative threonine dehydratase by transposon Tn5 insertion. J Bacteriol 158: 826-831. http://doi.org/10.1128/jb.158.3.826-831.1984
[37] Richaud C, Richaud F, Martin C, Haziza C, Patte JC (1984) Regulation of expression and nucleotide sequence of the Escherichia coli dapD gene. J Biol Chem 259: 14824.
[38] Kurihara S, Oda S, Kumagai H, Suzuki H (2006) Gamma-glutamyl-gamma-aminobutyrate hydrolase in the putrescine utilization pathway of Escherichia coli K-12. FEMS Microbiol Lett 256: 318-323. http://doi.org/10.1111/j.1574-6968.2006.00137.x
[39] Vimr ER, Troy FA (1985) Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol 164: 845-853. http://doi.org/10.1128/jb.164.2.845-853.1985
[40] Phillips GJ, Silhavy TJ (1992) The E. coli ffh gene is necessary for viability and efficient protein export. Nature 359: 744-746. http://doi.org/10.1038/359744a0
[41] Xiong Y, Lei QY, Zhao S, Guan KL (2011) Regulation of glycolysis and gluconeogenesis by acetylation of PKM and PEPCK. Cold Spring Harb Symp Quant Biol 76: 285-289. http://doi.org/10.1101/sqb.2011.76.010942
[42] Aristarkhov A, Mikulskis A, Belasco JG, Lin EC (1996) Translation of the adhE transcript to produce ethanol dehydrogenase requires RNase III cleavage in Escherichia coli. J Bacteriol 178: 4327-4332. http://doi.org/10.1128/jb.178.14.4327-4332.1996
[43] Maulucci G, Cohen O, Daniel B, Sansone A, Petropoulou PI, Filou S, et al (2016) Fatty acid-related modulations of membrane fluidity in cells: detection and implications. Free Radic Res 50: S40-S50. http://doi.org/10.1080/10715762.2016.1231403
[44] Tremaroli V, Fedi S, Zannoni D (2007) Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch Microbiol 187: 127-135. http://doi.org/10.1007/s00203-006-0179-4
[45] Pérez JM, Calderón IL, Arenas FA, Fuentes DE, Pradenas GA, Fuentes EL, et al (2007) Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS One 2: e211. http://doi.org/10.1371/journal.pone.0000211
[46] Lilley PE, Stamford NP, Vasudevan SG, Dixon NE (1993) The 92-min region of the Escherichia coli chromosome: location and cloning of the ubi and alr. Gene 129: 9-16. http://doi.org/10.1016/0378-1119(93)90690-5
[47] Campos E, Montella C, Garces F, Baldoma L, Aguilar J, Badia J (2007) Aerobic L-ascorbate metabolism and associated oxidative stress in Escherichia coli. Microbiology (Reading) 153: 3399-3408. http://doi.org/10.1099/mic.0.2007/009613-0
[48] Kirby TW, Hindenach BR, Greene RC (1986) Regulation of in vivo transcription of the Escherichia coli K-12 metJBLF gene cluster. J Bacteriol 165: 671-677. http://doi.org/10.1128/jb.165.3.671-677.1986
[49] Niederhoffer EC, Naranjo CM, Bradley KL, Fee JA (1990) Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. J Bacteriol 172: 1930-1938. http://doi.org/10.1128/jb.172.4.1930-1938.1990
[50] Wu J, Weiss B (1991) Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli. J Bacteriol 173: 2864-2871. http://doi.org/10.1128/jb.173.9.2864-2871.1991
[51] Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem 82: 323-355. http://doi.org/10.1146/annurev-biochem-060208-092442
[52] Bhandari V, Houry WA (2015) Substrate Interaction Networks of the Escherichia coli Chaperones: Trigger Factor, DnaK and GroEL. Adv Exp Med Biol 883: 271-294. http://doi.org/10.1007/978-3-319-23603-2_15
[53] Cohen SP, Mcmurry LM, Levy SB (1988) marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol 1988, 170: 5416-5422. http://doi.org/10.1128/jb.170.12.5416-5422.1988
[54] Martin RG, Rosner JL (1995) Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc Natl Acad Sci U S A 92: 5456-5460. http://doi.org/10.1073/pnas.92.12.5456
[55] Holmqvist E, Vogel J (2013) A small RNA serving both the Hfq and CsrA regulons. Genes Dev 27: 1073-1078. http://doi.org/10.1101/gad.220178.113
[56] Foster PL (2005) Stress responses and genetic variation in bacteria. Mutat Res 569: 3-11. http://doi.org/10.1016/j.mrfmmm.2004.07.017
[57] Xu C, Shi W, Rosen BP (1996) The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J Biol Chem 271: 2427-2432. http://doi.org/10.1074/jbc.271.5.2427
[58] Ohyama T, Igarashi K, Kobayashi H (1994) Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli. J Bacteriol 176: 4311-4315. http://doi.org/10.1128/jb.176.14.4311-4315.1994
[59] Sharma R, Rensing C, Rosen BP, Mitra B (2000) The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J Biol Chem 275: 3873-3878. http://doi.org/10.1074/jbc.275.6.3873
[60] Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310: 827-834. http://doi.org/10.1126/science.1117230
[61] Imazawa R, Takahashi Y, Aoki W, Sano M, Ito M (2016) A novel type bacterial flagellar motor that can use divalent cations as a coupling ion. Sci Rep 6: 19773. http://doi.org/10.1038/srep19773
[62] Wang H, Yin X, Wu Orr M, Dambach M, Curtis R, Storz G (2017) Increasing intracellular magnesium levels with the 31-amino acid MgtS protein. Proc Natl Acad Sci U S A 114: 5689-5694. http://doi.org/10.1073/pnas.1703415114
[63] Moon K, Six DA, Lee HJ, Raetz CR, Gottesman S (2013) Complex transcriptional and post-transcriptional regulation of an enzyme for lipopolysaccharide modification. Mol Microbiol 89(1): 52-64. http://doi.org/10.1111/mmi.12257
[64] Yin X, Orr MW, Wang H, Hobbs EC, Shabalina SA, Storz G (2019) The small protein MgtS and small RNA MgrR modulate the PitA phosphate symporter to boost intracellular magnesium levels. Mol Microbiol 111: 131-144. http://doi.org/10.1111/mmi.14143
[65] Martin JE, Waters LS, Storz G, Imlay JA (2015) The Escherichia coli small protein MntS and exporter MntP optimize the intracellular concentration of manganese. PLoS Genet 11: e1004977. http://doi.org/10.1371/journal.pgen.1004977
[66] King MM, Kayastha BB, Franklin MJ, Patrauchan MA (2020) Calcium Regulation of Bacterial Virulence. Adv Exp Med Biol 1131: 827-855. http://doi.org/10.1007/978-3-030-12457-1_33
[67] Arunima A, Swain SK, Patra SD, Das S, Mohakud NK, Misra N, Suar M (2020) Role of OB-Fold Protein YdeI in Stress Response and Virulence of Salmonella enterica Serovar Enteritidis. J Bacteriol 203: e00237-20. http://doi.org/10.1128/JB.00237-20
[68] Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem, 63: 915-948. http://doi.org/10.1146/annurev.bi.63.070194.004411
[69] Giroux X, Su WL, Bredeche MF, Matic I (2017) Maladaptive DNA repair is the ultimate contributor to the death of trimethoprim-treated cells under aerobic and anaerobic conditions. Proc. Natl Acad Sci U S A, 114: 11512-11517. http://doi.org/10.1073/pnas.1706236114