[1] Pietzner K, Nasser S, Alavi S, et al. Checkpoint-inhibition in ovarian cancer: rising star or just a dream? J Gynecol Oncol. 2018;29(6): e93.
[2] Li B, Chan HL, Chen P. Immune Checkpoint Inhibitors: Basics and Challenges. Curr Med Chem. 2019;26(17):3009-3025.
[3] Bastid J, Regairaz A, Bonnefoy N, et al. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity. Cancer Immunol Res. 2015;3(3):254-65.
[4] Canale FP, Ramello MC, Núñez N, et al. CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8+ T Cells. Cancer Res. 2018;78(1):115-128.
[5] Antonioli L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19(6):355-367.
[6] Minor M, Alcedo KP, Battaglia RA, et al. Cell type- and tissue-specific functions of ecto-5'-nucleotidase (CD73). Am J Physiol Cell Physiol. 2019;317(6):C1079-C1092.
[7] Clayton A, Al-Taei S, Webber J, et al. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. J Immunol. 2011;187(2):676-683.
[8] Xu Z, Gu C, Yao X, et al. CD73 promotes tumor metastasis by modulating RICS/RhoA signaling and EMT in gastric cancer. Cell Death Dis. 2020;11(3):202.
[9] Chen Q, Pu N, Yin H, et al. CD73 acts as a prognostic biomarker and promotes progression and immune escape in pancreatic cancer. J Cell Mol Med. 2020;24(15):8674-8686.
[10] Miao Yu, Gang Guo, Lei Huang, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint[J].Nature Communications,2020,11(1).
[11] Ma XL, Hu B, Tang WG, et al. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma. J Hematol Oncol. 2020;13(1):11.
[12] Neo SY, Yang Y, Record J, et al. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment. J Clin Invest. 2020;130(3):1185-1198.
[13] Zhu J, Zeng Y, Li W, et al. CD73/NT5E is a target of miR-30a-5p and plays an important role in the pathogenesis of non-small cell lung cancer. Mol Cancer. 2017;16(1):34.
[14] Fini C, Talamo F, Cherri S, et al. Biochemical and mass spectrometric characterization of soluble ecto-5'-nucleotidase from bull seminal plasma. Biochem J. 2003;372(Pt 2):443-451.
[15] Ghoteimi R, Braka A, Rodriguez C, et al. 4-Substituted-1,2,3-triazolo nucleotide analogues as CD73 inhibitors, their synthesis, in vitro screening, kinetic and in silico studies. Bioorg Chem. 2021; 107:104577.
[16] Du X, Moore J, Blank BR, et al. Orally Bioavailable Small-Molecule CD73 Inhibitor (OP-5244) Reverses Immunosuppression through Blockade of Adenosine Production. J Med Chem. 2020;63(18):10433-10459.
[17] S. Bhattarai, J. Pippel, A. Meyer. Structure Guides the Way to Subnanomolar Competitive Ecto-5′-Nucleotidase (CD73) inhibitors for Cancer Immunotherapy, Adv. Ther. 2 (2019) 1900075.
[18] S. Bhattarai, J. Pippel, E. Scaletti, R. 2-Substituted α, βMethylene-ADP Derivatives: Potent Competitive Ecto-5′-nucleotidase (CD73) Inhibitors with Variable Binding Modes, J. Med. Chem. 63 (2020) 2941-2957.
[19] Bhattarai S, Freundlieb M, Pippel J, et al. α, β-Methylene-ADP (AOPCP) Derivatives and Analogues: Development of Potent and Selective ecto-5'-Nucleotidase (CD73) Inhibitors. J Med Chem. 2015;58(15):6248-6263.
[20] Bowman CE, da Silva RG, Pham A, Young SW. An Exceptionally Potent Inhibitor of Human CD73. Biochemistry. 2019;58(31):3331-3334.
[21] Lawson KV, Kalisiak J, Lindsey EA, et al. Discovery of AB680: A Potent and Selective Inhibitor of CD73. J Med Chem. 2020;63(20):11448-11468.
[22] Balasubramanian PK, Balupuri A, Bhujbal SP, Cho SJ. 3D-QSAR-aided design of potent c-Met inhibitors using molecular dynamics simulation and binding free energy calculation. J Biomol Struct Dyn. 2019;37(8):2165-2178.
[23] Purohit D, Saini V, Kumar S, Kumar A, Narasimhan B. Three-dimensional quantitative structure-activity relationship (3DQSAR) and molecular docking study of 2-((pyridin-3-yloxy) methyl) piperazines as alpha 7 nicotinic acetylcholine receptor modulators for the treatment of inflammatory disorders. MiniRev Med Chem (2020) 20:1031-1041.
[24] Gajjar KA, Gajjar AK. CoMFA, CoMSIA and HQSAR Analysis of 3-aryl-3-ethoxypropanoic Acid Derivatives as GPR40 Modulators. Curr Drug Discov Technol. 2020;17(1):100-118.
[25] Sun G, Fan T, Zhang N, Ren T, Zhao L, Zhong R. Identification of the Structural Features of Guanine Derivatives as MGMT Inhibitors Using 3D-QSAR Modeling Combined with Molecular Docking. Molecules. 2016;21(7):823.
[26] Sharma H, Cheng X, Buolamwini JK. Homology model-guided 3D-QSAR studies of HIV-1 integrase inhibitors. J Chem Inf Model. 2012;52(2):515-544.
[27] Abu-Hammad A, Zalloum WA, Zalloum H, Abu-Sheikha G, Taha MO. Homology modeling of MCH1 receptor and validation by docking/scoring and protein-aligned CoMFA. Eur J Med Chem. 2009;44(6):2583-2596.
[28] Gu X, Wang Y, Wang M, Wang J, Li N. Computational investigation of imidazopyridine analogs as protein kinase B (Akt1) allosteric inhibitors by using 3D-QSAR, molecular docking and molecular dynamics simulations. J Biomol Struct Dyn. 2021;39(1):63-78.
[29] Ding L, Wang ZZ, Sun XD, et al. 3D-QSAR (CoMFA, CoMSIA), molecular docking and molecular dynamics simulations study of 6-aryl-5-cyano-pyrimidine derivatives to explore the structure requirements of LSD1 inhibitors. Bioorg Med Chem Lett. 2017; 27(15):3521-3528.
[30] Alzate-Morales J, Caballero J. Computational study of the interactions between guanine derivatives and cyclin-dependent kinase 2 (CDK2) by CoMFA and QM/MM. J Chem Inf Model. 2010;50(1):110-122.
[31] Bhatt HG, Patel PK. Pharmacophore modeling, virtual screening and 3D-QSAR studies of 5-tetrahydroquinolinylidine aminoguanidine derivatives as sodium hydrogen exchanger inhibitors. Bioorg Med Chem Lett. 2012;22(11):3758-3765.
[32] Kouman KC, Keita M, Kre N'Guessan R, et al. Structure-Based Design and in Silico Screening of Virtual Combinatorial Library of Benzamides Inhibiting 2-trans Enoyl-Acyl Carrier Protein Reductase of Mycobacterium tuberculosis with Favorable Predicted Pharmacokinetic Profiles. Int J Mol Sci. 2019;20(19):4730.
[33] Kaur K, Talele TT. 3D QSAR studies of 1,3,4-benzotriazepine derivatives as CCK2 receptor antagonists. J Mol Graph Model. 2008;27(4):409-420.
[34] Gu W, Li Q, Li Y. Environment-friendly PCN derivatives design and environmental behavior simulation based on a multi-activity 3D-QSAR model and molecular dynamics. J Hazard Mater. 2020; 393:122339.
[35] Chen Y, Cai X, Jiang L, Li Y. Prediction of octanol-air partition coefficients for polychlorinated biphenyls (PCBs) using 3D-QSAR models. Ecotoxicol Environ Saf. 2016; 124:202-212.
[36] Yang LZ, Liu M. A Double-Activity (Green Algae Toxicity and Bacterial Genotoxicity) 3D-QSAR Model Based on the Comprehensive Index Method and Its Application in Fluoroquinolones' Modification. Int J Environ Res Public Health. 2020;17(3):942.
[37] Iyer P, Bolla J, Kumar V, Gill MS, Sobhia ME. In silico identification of targets for a novel scaffold, 2-thiazolylimino-5-benzylidin-thiazolidin-4-one. Mol Divers. 2015;19(4):855-870.
[38] Wang M, Wang Y, Kong D, et al. In silico exploration of aryl sulfonamide analogs as voltage-gated sodium channel 1.7 inhibitors by using 3D-QSAR, molecular docking study, and molecular dynamics simulations. Comput Biol Chem.2018; 77:214-225.
[39] Meng XY, Zhang HX, Mezei M, Cui M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7(2):146-157.
[40] Li M, Wei D, Zhao H, Du Y. Genotoxicity of quinolones:substituents contribution and transformation products QSAR evaluation using 2D and 3D models. Chemosphere.2014;95:220–226.
[41] Pradiba D, Aarthy M, Shunmugapriya V, et al. Structural insights into the binding mode of flavonols with the active site of matrix metalloproteinase-9 through molecular docking and molecular dynamic simulations studies. J Biomol Struct Dyn. 2018;36(14):3718-3739.
[42] Nagamani S, Kesavan C, Muthusamy K. Atom-based and Pharmacophore-based 3D - QSAR Studies on Vitamin D Receptor (VDR). Comb Chem High Throughput Screen. 2018;21(5):329-343.
[43] Rajagopal K, Varakumar P, Aparna B, et al. Identification of some novel oxazine substituted 9-anilinoacridines as SARS-CoV-2 inhibitors for COVID-19 by molecular docking,free energy calculation and molecular dynamics studies. J Biomol Struct Dyn 2020; 12:1-12.
[44] Ru Q, Fadda HM, Li C, et al. Molecular dynamic simulations of ocular tablet dissolution. J Chem Inf Model. 2013;53(11):3000-3008.
[45] Vora J, Athar M, Sinha S, et al. Binding Insight of Anti-HIV Phytocompounds with Prime Targets of HIV: A Molecular Dynamics Simulation Analysis. Curr HIV Res. 2020;18(2):132-141.
[46] Sidler D, Riniker S. Fast Nosé-Hoover thermostat: molecular dynamics in quasi-thermodynamic equilibrium. Phys Chem Chem Phys. 2019;21(11):6059-6070.
[47] Ul Haq F, Abro A, Raza S, et al. Molecular dynamics simulation studies of novel β-lactamase inhibitor. J Mol Graph Model. 2017; 74:143-152.
[48] Gao Y, Wang H, Wang J, Cheng M. In silico studies on p21-activated kinase 4 inhibitors: comprehensive application of 3D-QSAR analysis, molecular docking, molecular dynamics simulations, and MM-GBSA calculation. J Biomol Struct Dyn. 2020;38(14):4119-4133.
[49] Chaudhari HK, Pahelkar A. 3D QSAR, Docking, Molecular Dynamics Simulations and MM-GBSA studies of Extended Side Chain of the Antitubercular Drug (6S) 2-Nitro-6- {[4-(trifluoromethoxy) benzyl] oxy}-6,7-dihydro-5H-imidazo[2,1-b] [1,3] oxazine. Infect Disord Drug Targets. 2019;19(2):145-166.
[50] Jayaraj JM, Krishnasamy G, Lee JK, Muthusamy K. In silico identification and screening of CYP24A1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis. J Biomol Struct Dyn. 2019;37(7):1700-1714.