1 Hardy J, Selkoe DJ: The amyloid hypothesis of alzheimer's disease: Progress and problems on the road to therapeutics. Science (New York, NY) 2002;297:353-356.
2 Huang W, Cheng P, Yu K, Han Y, Song M, Li Y: Hyperforin attenuates aluminum-induced aβ production and tau phosphorylation via regulating akt/gsk-3β signaling pathway in pc12 cells. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2017;96:1-6.
3 Lauretti E, Dincer O, Praticò D: Glycogen synthase kinase-3 signaling in alzheimer's disease. Biochimica et biophysica acta Molecular cell research 2020;1867:118664.
4 Chu J, Lauretti E, Praticò D: Caspase-3-dependent cleavage of akt modulates tau phosphorylation via gsk3β kinase: Implications for alzheimer's disease. Molecular psychiatry 2017;22:1002-1008.
5 Zheng R, Zhang ZH, Chen C, Chen Y, Jia SZ, Liu Q, Ni JZ, Song GL: Selenomethionine promoted hippocampal neurogenesis via the pi3k-akt-gsk3β-wnt pathway in a mouse model of alzheimer's disease. Biochemical and biophysical research communications 2017;485:6-15.
6 Yao Y, Wang Y, Kong L, Chen Y, Yang J: Osthole decreases tau protein phosphorylation via pi3k/akt/gsk-3β signaling pathway in alzheimer's disease. Life sciences 2019;217:16-24.
7 Yi JH, Baek SJ, Heo S, Park HJ, Kwon H, Lee S, Jung J, Park SJ, Kim BC, Lee YC, Ryu JH, Kim DH: Direct pharmacological akt activation rescues alzheimer's disease like memory impairments and aberrant synaptic plasticity. Neuropharmacology 2018;128:282-292.
8 Zhang Y, Huang NQ, Yan F, Jin H, Zhou SY, Shi JS, Jin F: Diabetes mellitus and alzheimer's disease: Gsk-3β as a potential link. Behavioural brain research 2018;339:57-65.
9 Gao C, Hölscher C, Liu Y, Li L: Gsk3: A key target for the development of novel treatments for type 2 diabetes mellitus and alzheimer disease. Reviews in the neurosciences 2011;23:1-11.
10 Kotha RR, Luthria DL: Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules (Basel, Switzerland) 2019;24
11 Ringman JM, Frautschy SA, Teng E, Begum AN, Bardens J, Beigi M, Gylys KH, Badmaev V, Heath DD, Apostolova LG, Porter V, Vanek Z, Marshall GA, Hellemann G, Sugar C, Masterman DL, Montine TJ, Cummings JL, Cole GM: Oral curcumin for alzheimer's disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer's research & therapy 2012;4:43.
12 Yanagisawa D, Kato T, Taguchi H, Shirai N, Hirao K, Sogabe T, Tomiyama T, Gamo K, Hirahara Y, Kitada M, Tooyama I: Keto form of curcumin derivatives strongly binds to aβ oligomers but not fibrils. Biomaterials 2021;270:120686.
13 Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ: Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an alzheimer mouse model. Journal of neurochemistry 2007;102:1095-1104.
14 Hoppe JB, Coradini K, Frozza RL, Oliveira CM, Meneghetti AB, Bernardi A, Pires ES, Beck RC, Salbego CG: Free and nanoencapsulated curcumin suppress β-amyloid-induced cognitive impairments in rats: Involvement of bdnf and akt/gsk-3β signaling pathway. Neurobiology of learning and memory 2013;106:134-144.
15 Ni H, Jin W, Zhu T, Wang J, Yuan B, Jiang J, Liang W, Ma Z: Curcumin modulates tlr4/nf-κb inflammatory signaling pathway following traumatic spinal cord injury in rats. The journal of spinal cord medicine 2015;38:199-206.
16 Park SY, Jin ML, Kim YH, Kim Y, Lee SJ: Anti-inflammatory effects of aromatic-turmerone through blocking of nf-κb, jnk, and p38 mapk signaling pathways in amyloid β-stimulated microglia. International immunopharmacology 2012;14:13-20.
17 Huang HC, Tang D, Xu K, Jiang ZF: Curcumin attenuates amyloid-β-induced tau hyperphosphorylation in human neuroblastoma sh-sy5y cells involving pten/akt/gsk-3β signaling pathway. Journal of receptor and signal transduction research 2014;34:26-37.
18 Jain SK, Rains J, Croad J, Larson B, Jones K: Curcumin supplementation lowers tnf-alpha, il-6, il-8, and mcp-1 secretion in high glucose-treated cultured monocytes and blood levels of tnf-alpha, il-6, mcp-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxidants & redox signaling 2009;11:241-249.
19 Mei X, Zhu L, Zhou Q, Li X, Chen Z: Interplay of curcumin and its liver metabolism on the level of aβ in the brain of app(swe)/ps1(de9) mice before ad onset. Pharmacological reports : PR 2020;72:1604-1613.
20 Wakabayashi T, Yamaguchi K, Matsui K, Sano T, Kubota T, Hashimoto T, Mano A, Yamada K, Matsuo Y, Kubota N, Kadowaki T, Iwatsubo T: Differential effects of diet- and genetically-induced brain insulin resistance on amyloid pathology in a mouse model of alzheimer's disease. 2019;14:15.
21 Huang NQ, Jin H, Zhou SY, Shi JS, Jin F: Tlr4 is a link between diabetes and alzheimer's disease. Behavioural brain research 2017;316:234-244.
22 Liolitsa D, Powell J, Lovestone S: Genetic variability in the insulin signalling pathway may contribute to the risk of late onset alzheimer's disease. Journal of neurology, neurosurgery, and psychiatry 2002;73:261-266.
23 Wang Y, Feng W, Xue W, Tan Y, Hein DW, Li XK, Cai L: Inactivation of gsk-3beta by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes 2009;58:1391-1402.
24 Gupta SC, Kismali G, Aggarwal BB: Curcumin, a component of turmeric: From farm to pharmacy. BioFactors (Oxford, England) 2013;39:2-13.
25 Aggarwal BB: Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annual review of nutrition 2010;30:173-199.
26 Ghorbani Z, Hekmatdoost A, Mirmiran P: Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. International journal of endocrinology and metabolism 2014;12:e18081.
27 Zhu HT, Bian C, Yuan JC, Chu WH, Xiang X, Chen F, Wang CS, Feng H, Lin JK: Curcumin attenuates acute inflammatory injury by inhibiting the tlr4/myd88/nf-κb signaling pathway in experimental traumatic brain injury. Journal of neuroinflammation 2014;11:59.
28 Zhu W, Wu Y, Meng YF, Wang JY, Xu M, Tao JJ, Lu J: Effect of curcumin on aging retinal pigment epithelial cells. Drug design, development and therapy 2015;9:5337-5344.
29 Koronyo-Hamaoui M, Koronyo Y, Ljubimov AV, Miller CA, Ko MK, Black KL, Schwartz M, Farkas DL: Identification of amyloid plaques in retinas from alzheimer's patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model. NeuroImage 2011;54 Suppl 1:S204-217.
30 Leroy K, Brion JP: Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. Journal of chemical neuroanatomy 1999;16:279-293.
31 Leroy K, Yilmaz Z, Brion JP: Increased level of active gsk-3beta in alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathology and applied neurobiology 2007;33:43-55.
32 Serenó L, Coma M, Rodríguez M, Sánchez-Ferrer P, Sánchez MB, Gich I, Agulló JM, Pérez M, Avila J, Guardia-Laguarta C, Clarimón J, Lleó A, Gómez-Isla T: A novel gsk-3beta inhibitor reduces alzheimer's pathology and rescues neuronal loss in vivo. Neurobiology of disease 2009;35:359-367.
33 Wang H, Huang S, Yan K, Fang X, Abussaud A, Martinez A, Sun HS, Feng ZP: Tideglusib, a chemical inhibitor of gsk3β, attenuates hypoxic-ischemic brain injury in neonatal mice. Biochimica et biophysica acta 2016;1860:2076-2085.