[1] A. Ecija, A. Larrañaga, K. Vidal, L. Ortega, and M. I. Arriortua, Synthetic methods for perovskite materials; structure and morphology: INTECH Open Access Publisher, 2012.
[2] N. K. Elumalai, M. A. Mahmud, D. Wang, and A. Uddin, "Perovskite solar cells: progress and advancements," Energies, vol. 9, p. 861, 2016.
[3] J. Huang, Y. Yuan, Y. Shao, and Y. Yan, "Understanding the physical properties of hybrid perovskites for photovoltaic applications," Nature Reviews Materials, vol. 2, pp. 1-19, 2017.
[4] M. A. Green, A. Ho-Baillie, and H. J. Snaith, "The emergence of perovskite solar cells," Nature photonics, vol. 8, pp. 506-514, 2014.
[5] S. A. Kandjani, S. Mirershadi, and A. Nikniaz, "Inorganic–organic perovskite solar cells," Solar Cells-New Approaches and Reviews, p. 450, 2015.
[6] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
[7] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific reports, vol. 2, pp. 1-7, 2012.
[8] W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, et al., "Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells," Science, vol. 356, pp. 1376-1379, 2017.
[9] D. Liu, M. K. Gangishetty, and T. L. Kelly, "Effect of CH 3 NH 3 PbI 3 thickness on device efficiency in planar heterojunction perovskite solar cells," Journal of Materials Chemistry A, vol. 2, pp. 19873-19881, 2014.
[10] H. A. Atwater and A. Polman, "Plasmonics for improved photovoltaic devices," in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, ed: World Scientific, 2011, pp. 1-11.
[11] D. Derkacs, S. Lim, P. Matheu, W. Mar, and E. Yu, "Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles," Applied Physics Letters, vol. 89, p. 093103, 2006.
[12] M. D. Brown, T. Suteewong, R. S. S. Kumar, V. D’Innocenzo, A. Petrozza, M. M. Lee, et al., "Plasmonic dye-sensitized solar cells using core− shell metal− insulator nanoparticles," Nano letters, vol. 11, pp. 438-445, 2011.
[13] I. Vangelidis, A. Theodosi, M. J. Beliatis, K. K. Gandhi, A. Laskarakis, P. Patsalas, et al., "Plasmonic organic photovoltaics: unraveling plasmonic enhancement for realistic cell geometries," Acs Photonics, vol. 5, pp. 1440-1452, 2018.
[14] W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, et al., "Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles," Nano letters, vol. 13, pp. 4505-4510, 2013.
[15] A. Furasova, E. Calabró, E. Lamanna, E. Tiguntseva, E. Ushakova, E. Ubyivovk, et al., "Resonant silicon nanoparticles for enhanced light harvesting in halide perovskite solar cells," Advanced Optical Materials, vol. 6, p. 1800576, 2018.
[16] M. Batmunkh, T. Macdonald, W. Peveler, A. Bati, C. J. Carmalt, I. Parkin, et al., "Plasmonic gold nanostars incorporated into high-efficiency perovskite solar cells," ChemSusChem, vol. 10, pp. 3750-3753, 2017.
[17] N. Aeineh, E. M. Barea, A. Behjat, N. Sharifi, and I. n. Mora-Seró, "Inorganic surface engineering to enhance perovskite solar cell efficiency," ACS Applied Materials & Interfaces, vol. 9, pp. 13181-13187, 2017.
[18] M. Sui, S. Kunwar, P. Pandey, and J. Lee, "Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles," Scientific reports, vol. 9, pp. 1-14, 2019.
[19] I. Khan, K. Saeed, and I. Khan, "Nanoparticles: Properties, applications and toxicities," Arabian journal of chemistry, vol. 12, pp. 908-931, 2019.
[20] P. B. Johnson and R.-W. Christy, "Optical constants of the noble metals," Physical review B, vol. 6, p. 4370, 1972.
[21] P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S.-J. Moon, et al., "Complex Refractive Index Spectra of CH3NH3PbI3 Perovskite Thin Films Determined by Spectroscopic Ellipsometry and Spectrophotometry," The journal of physical chemistry letters, vol. 6, pp. 66-71, 2014.
[22] M. Filipič, P. Löper, B. Niesen, S. De Wolf, J. Krč, C. Ballif, et al., "CH 3 NH 3 PbI 3 perovskite/silicon tandem solar cells: characterization based optical simulations," Optics express, vol. 23, pp. A263-A278, 2015.
[23] A. Hajjiah, I. Kandas, and N. Shehata, "Efficiency enhancement of perovskite solar cells with plasmonic nanoparticles: a simulation study," Materials, vol. 11, p. 1626, 2018.
[24] S. Roy and G. G. Botte, "Perovskite solar cell for photocatalytic water splitting with a TiO 2/Co-doped hematite electron transport bilayer," RSC advances, vol. 8, pp. 5388-5394, 2018.
[25] A. U. Rehman, M. Khan, A. D. Khan, J. Iqbal, M. Aslam, S. Khan, et al., "Effect of plasmonic multilayered photoanode structures on the absorption of dye sensitized solar cell," Japanese Journal of Applied Physics, 2020.
[26] R. Fan, L. Wang, Y. Chen, G. Zheng, L. Li, Z. Li, et al., "Tailored [email protected] TiO 2 nanostructures for the plasmonic effect in planar perovskite solar cells," Journal of Materials Chemistry A, vol. 5, pp. 12034-12042, 2017.
[27] H. Lee, Y. K. Lee, E. Hwang, and J. Y. Park, "Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission," The Journal of Physical Chemistry C, vol. 118, pp. 5650-5656, 2014.
[28] Z. Yuan, Z. Wu, S. Bai, Z. Xia, W. Xu, T. Song, et al., "Hot‐Electron Injection in a Sandwiched TiOx–Au–TiOx Structure for High‐Performance Planar Perovskite Solar Cells," Advanced Energy Materials, vol. 5, p. 1500038, 2015.
[29] Y. Cheng, C. Chen, X. Chen, J. Jin, H. Li, H. Song, et al., "Considerably enhanced perovskite solar cells via the introduction of metallic nanostructures," Journal of Materials Chemistry A, vol. 5, pp. 6515-6521, 2017.
[30] W. Li, A. Elzatahry, D. Aldhayan, and D. Zhao, "Core–shell structured titanium dioxide nanomaterials for solar energy utilization," Chemical Society Reviews, vol. 47, pp. 8203-8237, 2018.