1 Coronaviridae Study Group of the International Committee on Taxonomy of, V. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5, 536-544, doi:10.1038/s41564-020-0695-z (2020).
2 Deng, X. et al. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv, doi:10.1101/2021.03.07.21252647 (2021).
3 Davies, N. G. et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, doi:10.1126/science.abg3055 (2021).
4 Zeng, W. et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun 527, 618-623, doi:10.1016/j.bbrc.2020.04.136 (2020).
5 Mitra S, Ray SK & R, B. Synonymous codons influencing gene expression in organisms. Res Rep Biochem 6 (2016).
6 Kimchi-Sarfaty, C. et al. A "silent" polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525-528, doi:10.1126/science.1135308 (2007).
7 Hu, S., Wang, M., Cai, G. & He, M. Genetic code-guided protein synthesis and folding in Escherichia coli. J Biol Chem 288, 30855-30861, doi:10.1074/jbc.M113.467977 (2013).
8 Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273, doi:10.1038/s41586-020-2012-7 (2020).
9 Letko, M., Marzi, A. & Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5, 562-569, doi:10.1038/s41564-020-0688-y (2020).
10 Savastano, A., Ibanez de Opakua, A., Rankovic, M. & Zweckstetter, M. Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nat Commun 11, 6041, doi:10.1038/s41467-020-19843-1 (2020).
11 Breslow, N. E. & Cain, K. C. Logistic regression for two-stage case-control data. Biometrika 75, 11-20 (1988).
12 White, K. C. & Ramus, D. L. Two-stage impression technique for overdentures. J Prosthet Dent 61, 452-457 (1989).
13 Zhao, L. P. & Lipsitz, S. R. Designs and analysis of two-stage studies. Stat Med 11, 769-782 (1992).
14 Whittemore, A. S. 1-29 (1995).
15 Lin, D. Y. Evaluating statistical significance in two-stage genomewide association studies. Am J Hum Genet 78, 505-509, doi:10.1086/500812 (2006).
16 Zuo, Y. & Kang, G. A mixed two-stage method for detecting interactions in genomewide association studies. J Theor Biol 262, 576-583, doi:10.1016/j.jtbi.2009.10.029 (2010).
17 Yi, G. Y., Delaigle, A. & Gustafson, P. Handbook of measurement error. First edition. edn, (CRC Press, 2022).
18 Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34, 4121-4123, doi:10.1093/bioinformatics/bty407 (2018).
19 Rambaut, A. et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol 5, 1403-1407, doi:10.1038/s41564-020-0770-5 (2020).
20 Roxby, A. C. et al. Detection of SARS-CoV-2 Among Residents and Staff Members of an Independent and Assisted Living Community for Older Adults - Seattle, Washington, 2020. MMWR Morb Mortal Wkly Rep 69, 416-418, doi:10.15585/mmwr.mm6914e2 (2020).
21 Pettit, S. D. et al. 'All In': A Pragmatic Framework for COVID-19 Testing and Action on a Global Scale. EMBO Mol Med, doi:10.15252/emmm.202012634 (2020).
22 Perchetti, G. A. et al. Validation of SARS-CoV-2 detection across multiple specimen types. J Clin Virol, 104438, doi:10.1016/j.jcv.2020.104438 (2020).
23 Peddu, V. et al. Metagenomic analysis reveals clinical SARS-CoV-2 infection and bacterial or viral superinfection and colonization. Clin Chem, doi:10.1093/clinchem/hvaa106 (2020).
24 Nalla, A. K. et al. Comparative Performance of SARS-CoV-2 Detection Assays using Seven Different Primer/Probe Sets and One Assay Kit. J Clin Microbiol, doi:10.1128/JCM.00557-20 (2020).
25 Lieberman, J. A. et al. Comparison of Commercially Available and Laboratory Developed Assays for in vitro Detection of SARS-CoV-2 in Clinical Laboratories. J Clin Microbiol, doi:10.1128/JCM.00821-20 (2020).
26 Fauver, J. R. et al. Coast-to-Coast Spread of SARS-CoV-2 during the Early Epidemic in the United States. Cell, doi:10.1016/j.cell.2020.04.021 (2020).
27 Bryan, A. et al. Performance Characteristics of the Abbott Architect SARS-CoV-2 IgG Assay and Seroprevalence in Boise, Idaho. J Clin Microbiol, doi:10.1128/JCM.00941-20 (2020).
28 Bhatraju, P. K. et al. Covid-19 in Critically Ill Patients in the Seattle Region - Case Series. N Engl J Med, doi:10.1056/NEJMoa2004500 (2020).
29 Nelson, W. C. et al. An integrated genotyping approach for HLA and other complex genetic systems. Hum Immunol 76, 928-938, doi:10.1016/j.humimm.2015.05.001 (2015).
30 Smith, A. G. et al. Comparison of sequence-specific oligonucleotide probe vs next generation sequencing for HLA-A, B, C, DRB1, DRB3/B4/B5, DQA1, DQB1, DPA1, and DPB1 typing: Toward single-pass high-resolution HLA typing in support of solid organ and hematopoietic cell transplant programs. HLA 94, 296-306, doi:10.1111/tan.13619 (2019).
31 Addetia, A. et al. Sensitive Recovery of Complete SARS-CoV-2 Genomes from Clinical Samples by Use of Swift Biosciences' SARS-CoV-2 Multiplex Amplicon Sequencing Panel. J Clin Microbiol 59, doi:10.1128/JCM.02226-20 (2020).
32 Hastie, T. & Tibshirani, R. Generalized Additive Models. Statistical Science 1, 297-318 (1991).
33 Schwartz, J. Nonparametric smoothing in the analysis of air pollution and respiratory illness. The Canadian Journal of Statistics 22, 471-487 (1994).
34 Zhao, L. P. et al. Control costs, enhance quality, and increase revenue in three top general public hospitals in Beijing, China. PLoS ONE [Electronic Resource] 8, e72166, doi:10.1371/journal.pone.0072166 (2013).
35 Li, S., Khalid, N., Carlson, C. & Zhao, L. P. Estimating haplotype frequencies and standard errors for multiple single nucleotide polymorphisms. Biostatistics 4, 513-522 (2003).