[1] Zhang, Y., Yang, L., Wang, L., Cui, X. & Xing. H. Pillar iodination in functional boron cage hybrid supramolecular frameworks for high performance separation of light hydrocarbons. J. Mater. Chem. A. 7, 27560–27566 (2019).
[2] Wu, Y., Sun, Y., Xiao, J., Wang, X. & Li, Z. Glycine-modified HKUST-1 with simultaneously enhanced moisture stability and improved adsorption for light hydrocarbons separation. ACS Sustainable Chem. Eng. 7, 1557–1563 (2019).
[3] Wang, J., Krishna, R., Yang, T. & Deng. S. Nitrogen-rich microporous carbons for highly selective separation of light hydrocarbons. J. Mater. Chem. A. 4, 13957–13966 (2016).
[4] He, Y., Krishna, R. & Chen. B. Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ. Sci. 5, 9107–9120 (2012).
[5] Peng, Y. L. et al. A robust heterometallic ultramicroporous MOF with ultrahigh selectivity for propyne/propylene separation. J. Mater. Chem. A. 9, 2850–2856 (2021).
[6] Borah, B., Zhang, H. & Snurr. R. Q. Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage. Chem. Eng. Sci. 124, 135–143 (2015).
[7] Wu, Y. & Weckhuysen, B. M. Separation and purification of hydrocarbons with porous materials. Angew. Chem. Int. Ed. 60, 18930–18949 (2021).
[8] Wang, Y. et al. Solvent-induced framework-interpenetration isomers of Cu MOFs for efficient light hydrocarbon separation. Inorg. Chem. Front. 5, 2408–2412 (2018).
[9] Li, L., Yin, Q., Li, H. F., Liu, T. F. & Cao. R. Rational design of phosphonocarboxylate metal–organic frameworks for light hydrocarbon separations. Mater. Chem. Front. 2, 1436–1440 (2018).
[10] Chen, Y. et al. Selective adsorption of light alkanes on a highly robust indium based metal–organic framework. Ind. Eng. Chem. Res. 56, 4488–4495 (2017).
[11] https://wenku.baidu.com/view/ef04309029160b4e767f5acfa1c7aa00b42a9d68.html.
[12] Geng, D. et al. A 2D metal–thiacalix[4]arene porous coordination polymer with 1D channels: gas absorption/separation and frequency response. Dalton Trans. 47, 9008–9013 (2018).
[13] Zheng, B., Pan, Y. C., Lai, Z. P. & Huang, K. W. Molecular dynamics simulations on gate opening in ZIF-8: identification of factors for ethane and propane separation. Langmuir 29, 8865–8872 (2013).
[14] Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).
[15] Lin. J. Y. S. Molecular sieves for gas separation. Science 353,121–122 (2016).
[16] Kan, L., Li, G. & Liu. Y. Highly selective separation of C3H8 and C2H2 from CH4 within two water-stable Zn5 cluster-based metal–organic frameworks. ACS Appl. Mater. Interfaces 12, 18642–18649 (2020).
[17] Shi, R. et al. Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal-organic framework PCN-224. Sep. Purif. Technol. 207, 262–268 (2018).
[18] Wang, Y. et al. Selective aerobic oxidation of a metal–organic framework boosts thermodynamic and kinetic propylene/propane selectivity. Angew. Chem. Int. Ed. 131, 7774–7778 (2019).
[19] Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi. M. A metal-organic framework–based splitter for separating propylene from propane. Science 353, 137–140 (2016).
[20] Zeng, H. et al. Orthogonal-array dynamic molecular sieving of propylene/propane mixtures. Nature 595, 542–549 (2021).
[21] Bao, Z. et al. Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy Environ. Sci. 9, 3612–3641 (2016).
[22] Cui, W. G., Hu, T. L. & Bu. X. H. Metal–organic framework materials for the separation and purification of light hydrocarbons. Adv. Mater. 32, 1806445 (2020).
[23] Wang, Y. & Zhao. D. Beyond equilibrium: metal–organic frameworks for molecular sieving and kinetic gas separation. Cryst. Growth Des. 17, 2291–2308 (2017).
[24] Li, J. R., Kuppler, R. J. & Zhou. H. C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).
[25] Furukawa, S., Reboul, J., Diring, S., Sumida, K. & Kitagawa, S. Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700–5734 (2014).
[26] Adil, K. et al. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem. Soc. Rev. 46, 3402–3430 (2017).
[27] Duan, J., Pan, Y., Liu, G. & Jin. W. Metal-organic framework adsorbents and membranes for separation applications. Curr. Opin. Chem. Eng. 20, 122–131 (2018).
[28] Ying, Y. et al. Pressure-responsive two-dimensional metal-organic framework composite membranes for CO2 separation. Angew. Chem. Int. Ed. 133, 11419–11426 (2021).
[29] Wang, Y. et al. One-step ethylene purification from an acetylene/ethylene/ethane ternary mixture by cyclopentadiene cobalt-functionalized metal–organic frameworks. Angew. Chem. Int. Ed. 60, 11350–11358 (2021).
[30] Li, B. et al. An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv. Mater. 29,1704210 (2017).
[31] Assen, A. H. et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. Angew. Chem. Int. Ed. 54, 14353–14358 (2015).
[32] Hamon, L. et al. Co-adsorption and separation of CO2−CH4 mixtures in the highly flexible MIL-53(Cr) MOF. J. Am. Chem. Soc. 131, 17490–17499 (2009).
[33] Lin, R. B. et al. Molecular sieving of ethylene from ethane using a rigid metal-organic framework. Nat. Mater. 17, 1128–1133 (2018).
[34] Liang, B. et al. An ultramicroporous metal–organic framework for high sieving separation of propylene from propane. J. Am. Chem. Soc. 142, 17795–17801 (2020).
[35] Zhang, Z. et al. Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew. Chem. Int. Ed. 56, 16282–16287 (2017).
[36] Ding, Q. et al. Exploiting equilibrium-kinetic synergetic effect for separation of ethylene and ethane in a microporous metal-organic framework. Sci. Adv. 6, eaaz4322 (2020).
[37] Zhou, D. D. et al. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nat. Mater. 18, 994–999 (2019).
[38] Chen, X. et al. Direct observation of Xe and Kr adsorption in a Xe-selective microporous metal–organic framework. J. Am. Chem. Soc. 137, 7007–7010 (2015).
[39] Gan, L. et al. A Highly water-stable meta-carborane-based copper metal–organic framework for efficient high-temperature butanol separation. J. Am. Chem. Soc. 142, 8299–8311 (2020).
[40] Li, L. et al. A robust squarate-based metal–organic framework demonstrates record-high affinity and selectivity for xenon over krypton. J. Am. Chem. Soc. 141, 9358–9364 (2019).
[41] Roztocki, K. et al. Collective breathing in an eightfold interpenetrated metal-organic framework: from mechanistic understanding towards threshold sensing architectures. Angew. Chem. Int. Ed. 132, 4521–4527 (2020).
[42] Yang, H. et al. Lock-and-Key and shape-memory effects in an unconventional synthetic path to magnesium metal–organic frameworks. Angew. Chem. Int. Ed. 58, 11757–11762 (2019).
[43] Taylor, M. K. et al. Tuning the adsorption-induced phase change in the flexible metal–organic framework Co(bdp). J. Am. Chem. Soc. 138, 15019–15026 (2016).
[44] Luo, F. et al. UTSA-74: A MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J. Am. Chem. Soc. 138, 5678–5684 (2016).
[45] Yin, M. et al. A [Th8Co8] nanocage-based metal–organic framework with extremely narrow window but flexible nature enabling dual-sieving effect for both isotope and isomer separation. CCS Chem. 3, 1115–1126 (2021).
[46] Zhang, H. et al. Robust metal–organic framework with multiple traps for trace Xe/Kr separation. Sci. Bull. 66, 1073–1079 (2021).
[47] Wang, L. et al. Constructing redox-active microporous hydrogen-bonded organic framework by imide-functionalization: Photochromism, electrochromism, and selective adsorption of C2H2 over CO2. Chem. Eng. J. 383, 123117 (2020).
[48] Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).