1-Chen, Y., Clarke, O. B., Kim, J., Stowe, S., Kim, Y. K., Assur, Z., Cavalier, M., Godoy-Ruiz, R., von Alpen, D. C., Manzini, C., Blaner, W. S., Frank, J., Quadro, L., Weber, D. J., Shapiro, L., Hendrickson, W. A., &Mancia, F. (2016). Structure of the STRA6 receptor for retinol uptake. Science (New York, N.Y.), 353(6302), aad8266. https://doi.org/10.1126/science.aad8266.
2- Kelly, Mary, and Johannes von Lintig. “STRA6: role in cellular retinol uptake and efflux.” Hepatobiliary surgery and nutrition vol. 4,4 (2015): 229-42. doi:10.3978/j.issn.2304-3881.2015.01.12
3- Barrett, Crisha et al. “Human Peripheral Blood Mononuclear Cells Express High Levels of the Vitamin a Transport Protein, Stimulated by Retinoic Acid 6 (P19-004-19).” Current Developments in Nutrition vol. 3,Suppl 1 nzz049.P19-004-19. 13 Jun. 2019, doi:10.1093/cdn/nzz049.P19-004-19
4-Developmental expression pattern of Stra6, a retinoic acid-responsive gene encoding a new type of membrane protein. Bouillet P, Sapin V, Chazaud C, Messaddeq N, Décimo D, Dollé P, Chambon P Mech Dev. 1997 May; 63(2):173-86.
5-Receptor-mediated cellular uptake mechanism that couples to intracellular storage. Kawaguchi R, Yu J, Ter-Stepanian M, Zhong M, Cheng G, Yuan Q, Jin M, Travis GH, Ong D, Sun HACS Chem Biol. 2011 Oct 21; 6(10):1041-51.
6- RBP4 disrupts vitamin A uptake homeostasis in a STRA6-deficient animal model for Matthew-Wood syndrome. Isken A, Golczak M, Oberhauser V, Hunzelmann S, Driever W, Imanishi Y, Palczewski K, von Lintig J Cell Metab. 2008 Mar; 7(3):258-68.
7-Case-control analysis of SNPs in GLUT4, RBP4 and STRA6: association of SNPs in STRA6 with type 2 diabetes in a South Indian population. Nair AK, Sugunan D, Kumar H, Anilkumar G PLoS One. 2010 Jul 6; 5(7):e11444.
8-Pasutto, F., Sticht, H., Hammersen, G., Gillessen-Kaesbach, G., Fitzpatrick, D. R., Nürnberg, G., Brasch, F., Schirmer-Zimmermann, H., Tolmie, J. L., Chitayat, D., Houge, G., Fernández-Martínez, L., Keating, S., Mortier, G., Hennekam, R. C. M., von der Wense, A., Slavotinek, A., Meinecke, P., Bitoun, P., ... Rauch, A. (2007). Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. American Journal of Human Genetics, 80(3), 550-60. https://doi.org/10.1086/512203
9-A puzzle over several decades: eye anomalies with FRAS1 and STRA6 mutations in the same family. Ng WY, Pasutto F, Bardakjian TM, Wilson MJ, Watson G, Schneider A, Mackey DA, Grigg JR, Zenker M, Jamieson RV Clin Genet. 2013 Feb; 83(2):162-8.
10-Phenotypic spectrum of STRA6 mutations: from Matthew-Wood syndrome to non-lethal anophthalmia. Chassaing N, Golzio C, Odent S, Lequeux L, Vigouroux A, Martinovic-Bouriel J, Tiziano FD, Masini L, Piro F, Maragliano G, Delezoide AL, Attié-Bitach T, Manouvrier-Hanu S, Etchevers HC, Calvas P Hum Mutat. 2009 May; 30(5):E673-81
11-Retinoid content, visual responses, and ocular morphology are compromised in the retinas of mice lacking the retinol-binding protein receptor, STRA6. Ruiz A, Mark M, Jacobs H, Klopfenstein M, Hu J, Lloyd M, Habib S, Tosha C, Radu RA, Ghyselinck NB, Nusinowitz S, Bok D Invest Ophthalmol Vis Sci. 2012 May 17; 53(6):3027-39.
12-Signaling by vitamin A and retinol-binding protein regulates gene expression to inhibit insulin responses. Berry DC, Jin H, Majumdar A, Noy N ProcNatlAcadSci U S A. 2011 Mar 15; 108(11):4340-5
13. Palczewski K. Chemistry and biology of vision. J Biol Chem. 2012;287:1612–1619. doi: 10.1074/jbc.R111.301150.
14. Al Tanoury Z, Piskunov A, Rochette-Egly C. Vitamin A and retinoid signaling: Genomic and nongenomic effects. J Lipid Res. 2013;54:1761–1775. doi: 10.1194/jlr.R030833.
15. Goodman DS. Vitamin A and retinoids in health and disease. N Engl J Med. 1984;310:1023–1031. doi: 10.1056/NEJM198404193101605. [PubMed] [CrossRef] [Google Scholar]
16. Shirakami Y, Lee SA, Clugston RD, Blaner WS. Hepatic metabolism of retinoids and disease associations. BiochimBiophysActa. 2012;1821:124–136. doi: 10.1016/j.bbalip.2011.06.023. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
17. di Masi A, et al. Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol Aspects Med. 2015;41:1–115. doi: 10.1016/j.mam.2014.12.003. [PubMed] [CrossRef] [Google Scholar]
18. West KP., Jr Extent of vitamin A deficiency among preschool children and women of reproductive age. J Nutr. 2002;132:2857S–2866S.
19-Kin Ting Kam, R., Deng, Y., Chen, Y. et al. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2, 11 (2012). https://doi.org/10.1186/2045-3701-2-11
20-Pino-Lagos K, Benson MJ, Noelle RJ. Retinoic acid in the immune system. Ann N Y Acad Sci. 2008 Nov;1143:170-87. doi: 10.1196/annals.1443.017. PMID: 19076350; PMCID: PMC3826166.
21-Raverdeau M, Mills KH. Modulation of T cell and innate immune responses by retinoic Acid. J Immunol. 2014 Apr;192(7):2953-8. PubMed PMID: 24659788. eng.
22-Ross AC, Stephensen CB. Vitamin A and retinoids in antiviral responses. FASEB J. 1996 Jul;10(9):979-85. PubMed PMID: 8801180. Eng
23-Kim CH. Control of Innate and Adaptive Lymphocytes by the RAR-Retinoic Acid Axis. Immune Netw. 2018 Jan 18;18(1):e1. doi: 10.4110/in.2018.18.e1. PMID: 29503736; PMCID: PMC5833116.
22-Karunanithi, Sheelarani et al. “RBP4-STRA6 Pathway Drives Cancer Stem Cell Maintenance and Mediates High-Fat Diet-Induced Colon Carcinogenesis.” Stem cell reports vol. 9,2 (2017): 438-450. doi:10.1016/j.stemcr.2017.06.002
23-Barclay JL, Anderson ST, Waters MJ, Curlewis JD. SOCS3 as a tumor suppressor in breast cancer cells, and its regulation by PRL. Int J Cancer. 2009 Apr 15;124(8):1756-66. doi: 10.1002/ijc.24172. PMID: 19115200.
24-Berry, Daniel C et al. “Signaling by vitamin A and retinol-binding protein regulates gene expression to inhibit insulin responses.” Proceedings of the National Academy of Sciences of the United States of America vol. 108,11 (2011): 4340-5. doi:10.1073/pnas.1011115108
25-Babon, J. J., Varghese, L. N., & Nicola, N. A. (2014). Inhibition of IL-6 family cytokines by SOCS3. Seminars in immunology, 26(1), 13–19. https://doi.org/10.1016/j.smim.2013.12.004
26-Croker BA, Krebs DL, Zhang JG, Wormald S, Willson TA, Stanley EG, Robb L, Greenhalgh CJ, Förster I, Clausen BE, Nicola NA, Metcalf D, Hilton DJ, Roberts AW, Alexander WS. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol. 2003 Jun;4(6):540-5. doi: 10.1038/ni931. Epub 2003 May 18. PMID: 12754505.
27-Huang KJ, Su IJ, Theron M, Wu YC, Lai SK, Liu CC, Lei HY. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol. 2005 Feb;75(2):185-94. doi: 10.1002/jmv.20255. PMID: 15602737; PMCID: PMC7166886.
28-Johnson HM, Lewin AS, Ahmed CM. SOCS, Intrinsic Virulence Factors, and Treatment of COVID-19. Front Immunol. 2020 Oct 23;11:582102. doi: 10.3389/fimmu.2020.582102. PMID: 33193390; PMCID: PMC7644869.
29-Merad, M., Martin, J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol 20, 355–362 (2020). https://doi.org/10.1038/s41577-020-0331-4
30-Fedders R, Muenzner M, Schupp M. Retinol binding protein 4 and its membrane receptors: a metabolic perspective. HormMolBiolClin Invest. 2015;22(1):27–37
31-Tepasse, P.-R.; Vollenberg, R.; Fobker, M.; Kabar, I.; Schmidt, H.; Meier, J.A.; Nowacki, T.; Hüsing-Kabar, A. Vitamin A Plasma Levels in COVID-19 Patients: A Prospective Multicenter Study and Hypothesis. Nutrients 2021, 13, 2173. https://doi.org/10.3390/nu13072173
32-Norseen J, Hosooka T, Hammarstedt A, Yore MM, Kant S, Aryal P, Kiernan UA, Phillips DA, Maruyama H, Kraus BJ, Usheva A, Davis RJ, Smith U, Kahn BB. Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a c-Jun N-terminal kinase- and toll-like receptor 4-dependent and retinol-independent mechanism. Mol Cell Biol. 2012 May;32(10):2010-9. doi: 10.1128/MCB.06193-11. Epub 2012 Mar 19. PMID: 22431523; PMCID: PMC3347417.
33-Ruan, Q. , Yang, K. , Wang, W. , Jiang, L. , & Song, J. (2020). Clinical predictors of mortality due to COVID‐19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine, 40(5), 846–848. 10.1007/s00134-020-05991-x
34-Devaprasad A, Pandit A. Enrichment of SARS-CoV-2 entry factors and interacting intracellular genes in peripheral immune cells. bioRxiv; 2021. DOI: 10.1101/2021.03.29.437515