1. Lucas, M., Karrer, U., Lucas, A. & Klenerman, P. Viral escape mechanisms--escapology taught by viruses. Int J Exp Pathol 82, 269-286 (2001).
2. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497-506 (2020).
3. Jiang, M. et al. T-cell subset counts in peripheral blood can be used as discriminatory biomarkers for diagnosis and severity prediction of Coronavirus disease 2019. J Infect Dis 222, 198-202, doi:10.1016/j.bcmd.2020.102437 (2020).
4. Stringhini, S. et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet, doi:10.1001/jama.2020.8279 (2020).
5. Seow, J. et al. Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection. medRxiv (2020).
6. Long, Q. X. et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 26, 845-848, doi:10.1038/s41591-020-0897-1 (2020).
7. Rydyznski Moderbacher, C. et al. Antigen-Specific Adaptive Immunity to SARS-CoV-2 in Acute COVID-19 and Associations with Age and Disease Severity. Cell, doi:https://doi.org/10.1016/j.cell.2020.09.038 (2020).
8. Funk, C. D., Laferriere, C. & Ardakani, A. A Snapshot of the Global Race for Vaccines Targeting SARS-CoV-2 and the COVID-19 Pandemic. Front Pharmacol 11, 937, doi:10.3389/fphar.2020.00937 (2020).
9. Giménez, E. et al. SARS-CoV-2-reactive interferon-γ-producing CD8+ T cells in patients hospitalized with coronavirus disease 2019. J Med Virol,
doi:10.1101/2020.06.08.13882610.1002/jmv.26213 (2020).
10. Vabret, N. et al. Immunology of COVID-19: current state of the science. Immunity 52, 910-941 (2020).
11. Thevarajan, I. et al. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat Med 26, 453-455 (2020).
12. Huang, A. T. et al. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv (2020).
13. Gudbjartsson, D. F. et al. Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med 382, 2302-2315, doi:10.1056/NEJMoa2006100 (2020).
14. Ladhani, S. N. et al. High prevalence of SARS-CoV-2 antibodies in care homes affected by COVID-19; a prospective cohort study in England. medRxiv (2020).
15. Cao, W. C., Liu, W., Zhang, P. H., Zhang, F. & Richardus, J. H. Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med 357, 1162-1163, doi:10.1056/NEJMc070348 (2007).
16. Vaisman-Mentesh, A. et al. SARS-CoV-2 specific memory B cells frequency in recovered patient remains stable while antibodies decay over time. medRxiv
(2020).
17. Wheatley, A. K. et al. Evolution of immunity to SARS-CoV-2. medRxiv, 2020.2009.2009.20191205, doi:10.1101/2020.09.09.20191205 (2020).
18. Mercado, N. B. et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature, doi:10.1038/s41586-020-2607-z (2020).
19. Baum, A. et al. REGN-COV2 antibody cocktail prevents and treats SARS-CoV-2 infection in rhesus macaques and hamsters. bioRxiv (2020).
20. Gupta, V. et al. Asymptomatic reinfection in two healthcare workers from India with genetically distinct SARS-CoV-2. Clin Infect Dis, doi:10.1093/cid/ciaa1451
(2020).
21. Rodda, L. B. et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. medRxiv (2020).
22. Tang, F. et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol 186, 7264-7268, doi:10.4049/jimmunol.0903490 (2011).
23. Tea, F. et al. Characterization of the human myelin oligodendrocyte glycoprotein antibody response in demyelination. Acta Neuropathol Commun 7, 145,
doi:10.1186/s40478-019-0786-3 (2019).
24. Hoffmann, M., Kleine-Weber, H. & Pohlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell 78, 779-784 e775, doi:10.1016/j.molcel.2020.04.022 (2020).
25. Keck, Z. Y. et al. Mutations in hepatitis C virus E2 located outside the CD81 binding sites lead to escape from broadly neutralizing antibodies but compromise virus infectivity. J Virol 83, 6149-6160, doi:10.1128/JVI.00248-09 (2009).
26. Bartosch, B. et al. In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes. Proc Natl Acad Sci U S A 100, 14199-14204, doi:10.1073/pnas.2335981100 (2003).
27. Kalemera, M. D. et al. Optimised cell systems for the investigation of hepatitis C virus E1E2 glycoproteins. bioRxiv, 2020.2006.2018.159442,
doi:10.1101/2020.06.18.159442 (2020).
28. Crawford, K. H. D. et al. Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays. Viruses 12, doi:10.3390/v12050513 (2020).
29. Hoaglin, D. C. Revising a display of multidimensional laboratory measurements to improve accuracy of perception. Methods Inf Med 32, 418-420 (1993).
30. Wu, B. R. et al. A method for detecting hepatitis C envelope specific memory B cells from multiple genotypes using cocktail E2 tetramers. J Immunol Methods 472, 65-74, doi:10.1016/j.jim.2019.06.016 (2019).
31. Rizzetto, S. et al. B-cell receptor reconstruction from single-cell RNA-seq with VDJPuzzle. Bioinformatics 34, 2846-2847, doi:10.1093/bioinformatics/bty203
(2018).
32. Liao, H. X. et al. High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J Virol Methods 158, 171-179, doi:10.1016/j.jviromet.2009.02.014 (2009).