Understanding oxide formation during corrosion of high-performance alloys in harsh environments is of great fundamental and industrial interest and provides a potential route for reducing the significant annual cost of corrosion globally. However, corrosion mechanisms involve multiple length scales, requiring a multitude of advanced experimental procedures. Here, we use correlated high resolution electron microscopy techniques over a range of length scales, combined with crystallographic modelling to show that there is a clear competition between epitaxial strain and growth stress during oxidation. The degree to which these competing mechanisms operate is shown to depend on the orientation of the substrate grains leading to significant local variations in oxide microstructure and thus protectiveness, even across a single sample. This leads to the possibility of tailoring substrate crystallographic textures in order to promote gradual phase transformation and the development of stress driven, well-oriented protective oxides, and so to improving overall corrosion performance.