Seizures induced by pilocarpine decreased LRP4 expression in hippocampus in vivo
To find out whether seizures could influence LRP4 expression in hippocampal astrocytes, epileptic seizures were induced in adult mouse by pilocarpine injection (300mg/kg, i.p.) [19]. Under our conditions, discontinuous seizures began to develop at around 20 min after the injection and lasted up to 4 h. Pilocarpine injected mice and controls (saline injected) were sacrificed at different time 0 h, 2 h, 4 h, 12 h after injection (each time point, n=3, per group), and total mRNAs of hippocampus were isolated for RT-qPCR. The results showed that seizures induced by pilocarpine significantly increased the relative level of Bdnf mRNA in hippocampus at each time point after injection, compared to control mice (injected with saline) (Fig. s1A), which is in agreement with previous observations [20, 21]. This result indicated that pilocarpine induced seizures regulated gene expression in hippocampus. Intriguingly, compared to control mice, the relative level of Lrp4 mRNA in hippocampus was significantly decreased in pilocarpine injected mice. After injection, relative Lrp4 mRNA level began to decrease at 2 h and move on to 12 h with further reduction (Fig. 1A). To confirm this result, we used Lrp4-lacZ/+ mice [7, 8], in which the Lrp4 gene was replaced with a cassette encoding a β-galactosidase (β-gal) fusion protein on one chromosome, to proceed pilocarpine induced seizure experiment. 4 h after pilocarpine injection, mice were sacrificed and brain slices were stained by X-gal. The results showed that β-gal activity was significantly reduced in stratum lacunosum-moleculare layer (LMol) and molecules layer (Mol) of the hippocampus (most of them are astrocytes), compared to control mice (Fig. 1B). This result also indicated that seizures induced by pilocarpine significantly decreased Lrp4 mRNA level in hippocampal astrocytes. Furthermore, after injected pilocarpine, total proteins of hippocampus were extracted at different times by RIPA and resolved by SDS-PAGE and subjected to Western blot analysis. The results showed that the relative level of LRP4 protein in hippocampus were also significantly decreased in pilocarpine injected mice, but it began at 4 h, later than the time of the reduction of Lrp4 mRNA level (Fig. 1C, D). These results indicated that seizures induced by pilocarpine significantly decreased LRP4 expression level (both mRNA and protein) in hippocampus in vivo.
Glutamate decreased LRP4 expression of hippocampal astrocytes in vitro
To better investigate the mechanism of previous finding, we tried to find a way to mimic pilocarpine induced seizures in vitro. Firstly, primary cultured hippocampal astrocytes were used in our study, because most of LRP4 expresses in astrocytes [7, 8]. Then, glutamate (0.5 mM) treatment in cultured hippocampal astrocytes was used, because it has been reported that pilocarpine induces an elevation in glutamate levels in the hippocampus, following the appearance of pilocarpine induced seizures [22], and the increase in the glutamate efflux was found in hippocampal synaptosomes [23], the increase of glutamate release influences gene expression level in astrocytes [24]. 4 h After glutamate treatment, total mRNAs of cultured hippocampal astrocytes were isolated for RT-qPCR. The result showed that the relative level of Bdnf mRNA in glutamate treated astrocytes significantly increased, compared to control (vehicle treatment) (Fig s1B). The result was in agreement with previous report [24] and our previous data in vivo (Fig. 1A). This indicated that glutamate can be used to treat cultured hippocampal astrocytes to mimic the process that pilocarpine induced seizures influences gene expression level in hippocampal astrocytes in vivo. To detect whether Lrp4 mRNA level in cultured hippocampal astrocytes could be changed by glutamate, mRNA was collected at different times after glutamate treatment. The result showed that the relative mRNA level of Lrp4 began to decrease about 30% at 2 h, and about 60% at 12 h (Fig. 2A). At the protein lever, the relative level of LRP4 protein in hippocampal astrocytes has no significantly changes at 2 h after glutamate treatment, but began to decrease 30% at 4 h and then decreased 50% at 12 h (Fig. 2B, C). These results indicated that glutamate decreased the LRP4 expression level in cultured hippocampal astrocytes.
Glutamate decreased LRP4 expression in cultured hippocampal astrocytes through activating astrocytic NMDA receptor
To investigate the mechanism of the reduction of LRP4 expression in glutamate treated hippocampal astrocytes, cultured hippocampal astrocytes were treated with glutamate (0.5 mM) with or without AP5 (50 mM) simultaneously. After 12 h, compared to control, the relative level of Lrp4 mRNA decreased about 70% in astrocytes which were treated by glutamate without AP5, but only decreased about 20% in astrocytes which were treated by glutamate with AP5 (Fig. 2D). We also detected the change of LRP4 protein level in this assay. After 12 h, the reduction of LRP4 protein in glutamate with AP5 treated hippocampal astrocytes was also less than that in glutamate without AP5 treated hippocampal astrocytes (Fig. 2E, F). These results showed that NMDA receptor antagonist AP5 can partially attenuated the reduction of Lrp4 mRNA and LRP4 protein expression level in glutamate treated astrocytes. This indicated that glutamate decreased LRP4 expression in cultured hippocampal astrocytes through activating astrocytic NMDA receptor.
Seizures induced by pilocarpine increased miR-351-5p expression in mice hippocampus in vivo
MicroRNAs play important gene-regulatory roles in animals and direct their posttranscriptional repression by pairing to the mRNAs of protein-coding genes [25]. TargetScan website is the most widely used website for predicting microRNAs to regulate protein expression [26]. Through this website’s query, we found top 5 predict microRNA which target to mouse Lrp4 gene: mmu-miR-125a-5p, mmu-miR-125b-5p, mmu-miR-351-5p, mmu-miR-6367, mmu-miR-6394. Then we detected whether seizures induced by pilocarpine could regulate the expression of these 5 microRNAs in mice hippocampus. After 4 h injection of pilocarpine or saline (vehicle control), mice were sacrificed, and total RNAs of hippocampus were isolated and stem‑loop micro-RNA RT‑qPCR assay was used to analyze microRNA. Quantitation cycle (Cq) values of microRNA were normalized to U6 small nuclear RNA, which was used as an internal control. The result showed that pilocarpine only significantly increased the relative level of mmu-miR-351-5p in hippocampus, but not those of mmu-miR-125a-5p, mmu-miR-125b-5p, mmu-miR-351-5p, and mmu-miR-6367 (Fig. 3A). These results were consistent with previous report [27]. Then we detected the increase of mmu-miR-351-5p level in hippocampus induced by seizures at different times. The result showed that compared to control, mmu-miR-351-5p expression began to increase around 6 times at 2 h after pilocarpine injection, and the elevation persisted for more than 12 h (Fig. 3B), which were simultaneous with the reduction of Lrp4 expression in hippocampus. These results indicated that seizures induced by pilocarpine increased mmu-miR-351-5p level in mice hippocampus.
Glutamate increased mmu-miR-351-5p level in cultured hippocampal astrocytes through activating astrocytic NMDA receptor in vitro
Again, we wanted to detect whether glutamate can increase mmu-miR-351-5p expression in cultured hippocampal astrocytes. After treated with glutamate (0.5 mM), mmu-miR-351-5p level in cultured hippocampal astrocytes was increased about 7 times at 2 h after glutamate treatment, and the elevation persisted for more than 12 h (Fig. 3C), which was consistent with previous data in vivo. Furthermore, cultured hippocampal astrocytes were treated with glutamate (0.5 mM) without or with AP5 (50 mM) at the same time. After 12 h, total RNAs of astrocytes were isolated for micro RNA RT-qPCR. The results showed that the elevation of mmu-miR-351-5p level in glutamate with AP5 treated astrocytes is significant lower than that in glutamate without AP5 treated astrocytes (Fig. 3D). These results indicated that glutamate increased the expression of mmu-miR-351-5p in cultured hippocampal astrocytes through activating astrocytic NMDA receptor.
miR-351-5p mimics decreased lrp4 expression in cultured hippocampal astrocytes in vitro
Previous data showed that seizures or glutamate increased miR-351-5p and reduced LRP4 concurrently in hippocampal astrocytes in vivo or in vitro. The question is whether the reduction of LRP4 level is due to the increasing of miR-351-5p level in hippocampal astrocytes. To answer this question, cultured hippocampal astrocytes were transfected respectively with miR-351-5p mimics or miR-351-5p m NC (control mimics) (50 nM). After 24 h, the miR-351-5p level significantly increased in miR-351-5p mimics transfected astrocytes compared to control (not transfected astrocytes), but no change in miR-351-5p m NC transfected astrocytes. The results showed that miR-351-5p level was successfully increased in miR-351-5p mimics transfected hippocampal astrocytes (Fig. 4A). Then different concentration of miR-351-5p mimics (0 nM, 25 nM, 50 nM, 100 nM) were transfected into cultured hippocampal astrocytes. After 24 h, the relative level of Lrp4 mRNA were measured by qPCR. The result showed that the relative level of Lrp4 mRNA was decreased at each concentration level (25 nM, 50 nM, 100 nM) (Fig. 4B). Because the reduction of relative Lrp4 mRNA had reached about 70% in 50 nM miR-351-5p mimics treatment astrocytes, we decided to transfect 50 nM miR-351-5p mimics or miR-351-5p m NC into cultured hippocampal astrocytes to do next experiments. After transfected by miR-351-5p mimics, the relative LRP4 protein level in cultured hippocampal astrocytes was significantly decreased compared to control, but no change in miR-351-5p m NC transfected astrocytes (Fig. 4C, D). These results indicated that LRP4 expression level in cultured hippocampal astrocytes could be suppressed by miR-351-5p mimics transfection.
miR-351 inhibitors attenuated LRP4 expression reduction induced by glutamate in cultured hippocampal astrocytes
To further confirm that the reduction of LRP4 expression level in astrocytes is due to the increasing of miR-351-5p, cultured hippocampal astrocytes were transfected with miR-351-5p inhibitors or miR-351-5p I NC (control inhibitors) (50 nM respectively). After 24 h, the miR-351-5p level significantly decreased in miR-351-5p inhibitors transfected astrocytes compared to control (not transfected astrocytes), but there was no change in miR-351-5p I NC transfected astrocytes (Fig. 4A). The result indicated that miR-351-5p expression in hippocampal astrocytes can be successfully suppressed by miR-351-5p inhibitors. Then we transfected miR-351-5p inhibitors or miR-351-5p I NC (50 nM respectively) into cultured hippocampal astrocytes. After 24 h, astrocytes were treated with glutamate (50 mM) for 4 h. The mRNA or protein were collected and subjected to qPCR or western blot. The results showed that compared to control astrocytes, both the relative level of Lrp4 mRNA and LRP4 protein decreased about 75% in the glutamate treated astrocytes and glutamate treated with miR-351-5p miR-351-5p I NC transfected astrocytes, but only decreased about 25% in glutamate treated with miR-351-5p inhibitors transfected astrocytes (Fig. 4E, F, G). These results showed that miR-351-5p inhibitors attenuated the reduction of LRP4 expression level in glutamate treated hippocampal astrocytes. Combine with previous data, it was proven that the reduction of LRP4 expression level in glutamate treated hippocampal astrocytes was caused by the increase of mmu-miR-351-5p.
Low expression of LRP4 in the hippocampus of mice trans-infected by sh Lrp4 lentivirus enhanced the threshold of seizure
Could the reduction of LRP4 expression level suppress seizures? We stereotactic injected shRNA lentivirus (sh control, sh Lrp4 scramble, sh Lrp4) into lacunosum-moleculare layer (LMol) and molecules layer (Mol) regions of mice hippocampus (Fig. 5A). The mice were allowed to recover for 14 days. Total proteins of hippocampus were extracted by RIPA and resolved by SDS-PAGE and subjected to Western blot analysis. The result showed that sh Lrp4 lentivirus trans-infection significantly decreased the relative LRP4 protein level in mice hippocampus, compared to control (sh control lentivirus injection), but not sh Lrp4 scramble lentivirus trans-infection. The results indicated the effectiveness of sh Lrp4 (decreasing LRP4 expression lever) (Fig. 5B, C). 2 weeks after lentivirus injection for recovery, we injected mice with pilocarpine (200 mg/kg, i.p.), and followed additional injections of pilocarpine (100 mg/kg) every 30 min. Most control mice (sh control lentivirus trans-infected mice) and sh Lrp4 scramble lentivirus trans-infected mice developed status epilepticus to score 5 (violent convulsions, falling over, death) after the fifth injection. In contrast, a majority of sh Lrp4 lentivirus trans-infected mice did not develop status epilepticus to score 5 even after the ninth injection (Fig. 5D, E). These data indicated that sh Lrp4 lentivirus trans-infected mice had a raised threshold to seizure due to reduction of LRP4 in hippocampus. After injecting mice with PTZ, a GABAA receptor antagonist that induces seizure via different mechanisms from pilocarpine, we get the same results. The latency to the onset of generalized convulsive seizures (GS) was higher in sh Lrp4 lentivirus trans-infected mice than in control mice (Fig. 5F). These results indicated that the threshold of seizures was upregulated by the reduction of LRP4 in hippocampus.