1. Hashimoto A, Nishikawa T, Hayashi T, et al (1992) The presence of free D-serine in rat brain. FEBS Lett 296:33–36.
2. Huang Y, Nishikawa T, Satoh K, et al (1998) Urinary excretion of D-serine in human: comparison of different ages and species. Biol Pharm Bull 21:156–162.
3. Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131.
4. Wolosker H, Dumin E, Balan L, Foltyn VN (2008) D-amino acids in the brain: D-serine in neurotransmission and neurodegeneration. FEBS J 275:3514–3526.
5. Papouin T, Ladépêche L, Ruel J, et al (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646.
6. Rosenberg D, Artoul S, Segal AC, et al (2013) Neuronal D-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 33:3533–3544.
7. Panatier A, Theodosis DT, Mothet J-P, et al (2006) Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 125:775–784.
8. Katsuki H, Nonaka M, Shirakawa H, et al (2004) Endogenous D-serine is involved in induction of neuronal death by N-methyl-D-aspartate and simulated ischemia in rat cerebrocortical slices. J Pharmacol Exp Ther 311:836–844.
9. Michard E, Lima PT, Borges F, et al (2011) Glutamate receptor–like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine. Science 332:434–437.
10. Pollock GE, Cheng CN, Cronin SE (1977) Determination of the D and L isomers of some protein amino acids present in soils. Anal Chem 49:2–7.
11. Dittmar T, Fitznar HP, Kattner G (2001) Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D-and L-amino acids. Geochim Cosmochim Acta 65:4103–4114.
12. Kawasaki N, Benner R (2006) Bacterial release of dissolved organic matter during cell growth and decline: molecular origin and composition. Limnol Oceanogr 51:2170–2180.
13. Arias CA, Martín-Martinez M, Blundell TL, et al (1999) Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174. Mol Microbiol 31:1653–1664.
14. Kaiser K, Benner R (2008) Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr 53:99–112.
15. Nagata Y, Tanaka K, Iida T, et al (1999) Occurrence of D-amino acids in a few archaea and dehydrogenase activities in hyperthermophile Pyrobaculum islandicum. Biochim Biophys Acta, Prot Struct Mol Enzymol 1435:160–166.
16. Nagata Y, Fukuda A, Sakai M, et al (2001) D-amino acid contents of mitochondria and some purple bacteria. J Mol Catal B Enzym 12:109–113.
17. Kapil S, Sharma V (2021) d-Amino acids in antimicrobial peptides: a potential approach to treat and combat antimicrobial resistance. Can J Microbiol 67:119–137.
18. Martinez JS, Zhang GP, Holt PD, et al (2000) Self-assembling amphiphilic siderophores from marine bacteria. Science 287:1245–1247.
19. Pradhan AK, Pradhan N, Mall G, et al (2013) Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis CH for inhibition of biofilm. Appl Biochem Biotechnol 171:1362–1375.
20. Vater J, Kablitz B, Wilde C, et al (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68:6210.
21. Healy VL, Park I-S, Walsh CT (1998) Active-site mutants of the VanC2 D-alanyl-D-serine ligase, characteristic of one vancomycin-resistant bacterial phenotype, revert towards wild-type D-alanyl-D-alanine ligases. Chem Biol 5:197–207.
22. Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci 96:13409–13414.
23. de Miranda J, Panizzutti R, Foltyn VN, Wolosker H (2002) Cofactors of serine racemase that physiologically stimulate the synthesis of the N-methyl-D-aspartate (NMDA) receptor coagonist D-serine. Proc Natl Acad Sci 99:14542–14547.
24. KAPIL S, SHARMA V (2020) SERINE RACEMASES FROM PROKARYOTES TO EUKARYOTES: AN OVERVIEW ON ITS ROLE AND EXISTENCE. Plant Cell Biotechnol Mol Biol 17–28.
25. Kubota T, Shimamura S, Kobayashi T, et al (2016) Distribution of eukaryotic serine racemases in the bacterial domain and characterization of a representative protein in Roseobacter litoralis Och 149. Microbiology 162:53–61.
26. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407.
27. Pradhan AK, Rath A, Pradhan N, et al (2018) Cyclic lipopeptide biosurfactant from Bacillus tequilensis exhibits multifarious activity. 3 Biotech 8:1–7.
28. Velusamy P, Pachaiappan R, Christopher M, et al (2015) Isolation and identification of a novel fibrinolytic Bacillus tequilensis CWD-67 from dumping soils enriched with poultry wastes. J Gen Appl Microbiol 61:241–247.
29. Li H, Guan Y, Dong Y, et al (2018) Isolation and evaluation of endophytic Bacillus tequilensis GYLH001 with potential application for biological control of Magnaporthe oryzae. PLoS One 13:e0203505.
30. Koshy M, De S (2019) Effect of Bacillus tequilensis SALBT crude extract with pectinase activity on demucilation of coffee beans and juice clarification. J Basic Microbiol 59:1185–1194.
31. Khan Z, Shafique M, Nawaz HR, et al (2019) Bacillus tequilensis ZMS-2: A novel source of alkaline protease with antimicrobial, anti-coagulant, fibrinolytic and dehairing potentials. PJPS 32:1913–18.
32. Bergey DH (2001) Bergey’s Manual® of Systematic Bacteriology. Springer Science & Business Media
33. Altschul SF, Gish W, Miller W, et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410.
34. Agrawal T, Kotasthane AS (2012) Chitinolytic assay of indigenous Trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. SpringerPlus 1:1–10.
35. Gopalakrishnan S, Pande S, Sharma M, et al (2011) Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot 30:1070–1078.
36. Bose A, Chawdhary V, Keharia H, Subramanian RB (2014) Production and characterization of a solvent-tolerant protease from a novel marine isolate Bacillus tequilensis P15. Ann Microbiol 64:343–354.
37. Valgas C, Souza SM de, Smânia EF, Smânia Jr A (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38:369–380.
38. Kaiser K, Benner R (2000) Determination of amino sugars in environmental samples with high salt content by high-performance anion-exchange chromatography and pulsed amperometric detection. Anal Chem 72:2566–2572.
39. Kaiser K, Benner R (2005) Hydrolysis-induced racemization of amino acids. Limnol Oceanogr-Meth 3:318–325.
40. Tanner ME (2002) Understanding nature’s strategies for enzyme-catalyzed racemization and epimerization. Acc Chem Res 35:237–246.
41. Christie G, Setlow P (2020) Bacillus spore germination: Knowns, unknowns and what we need to learn. Cell Signal 109729.
42. Turnbull PCB (1996) Bacillus: Barron’s medical microbiology. University of Texas Medical Branch
43. Gatson JW, Benz BF, Chandrasekaran C, et al (2006) Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. Int J Syst Evol Microbiol 56:1475–1484.
44. Nazina TN, Lebedeva EV, Poltaraus AB, et al (2004) Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol 54:2019–2024.
45. Slonczewski JL, Foster JW (2013) Microbiology: An evolving science: Third international student edition. WW Norton & Company.
46. Wijnands LM, Dufrenne JB, Zwietering MH, Van Leusden FM (2006) Spores from mesophilic Bacillus cereus strains germinate better and grow faster in simulated gastro-intestinal conditions than spores from psychrotrophic strains. Int J Food Microbiol 112:120–128.
47. Sharifi M, kunchirman BN (2020) Isolation and Identification of Bacillus Tequilensis from Mangrove Soil and Their Antimicrobial Activity against Common Pathogens. IJSRP 11:326–330.
48. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17.
49. Zhao L, Li X, Wang Z, et al (2019) A new strain of Bacillus tequilensis CGMCC 17603 isolated from biological soil crusts: A promising sand-fixation agent for desertification control. Sustainability 11:6501.
50. Wagh SK, Gadge PP, Padul MV (2018) Significant Hydrolysis of Wheat Gliadin by Bacillus tequilensis (10bT/HQ223107): a Pilot Study. Probiotics Antimicrob 10:662–667.
51. Mukherjee B, Dutta S (2019) Isolation of a phosphate solubilizing bacterial strain bacillus Tequilensis mcc 3872 from the rice field of burdwan district and characterization of its plant growth promoting traits. Pharm Innov J 8: 956-962.
52. Kaur G, Tewari R, Soni SK (2018) Screening of Secondary Metabolites for Antimicrobial Applications from Bacillus tequilensis RG2 (SOIL ISOLATE). J Pharm Innov 8:372–379.
53. Braden CR (2017) Emerging and Zoonotic Infectious Diseases.
54. Kuroda M, Ohta T, Uchiyama I, et al (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. The Lancet 357:1225–1240.
55. Kapil S, Kumar T, Sharma V Mechanism and challenges associated with adaptation and evolution of drug-resistant bacteria: an overview. As Pac J Mol Biol Biotechnol 28:1-18.
56. Yilmaz M, Soran H, Beyatli Y (2006) Antimicrobial activities of some Bacillus spp. strains isolated from the soil. Microbiol Res 161:127–131.
57. Geiss F (1987) Fundamentals of thin layer chromatography.
58. Bernardini J-J, Linget-Morice C, Hoh F, et al (1996) Bacterial siderophores: structure elucidation, and 1 H, 13 C and 15 N two-dimensional NMR assignments of azoverdin and related siderophores synthesized by Azomonas macrocytogenes ATCC 12334. Biometals 9:107–120.
59. Demange P, Bateman A, Mertz C, et al (1990) Bacterial siderophores: structures of pyoverdins Pt, siderophores of Pseudomonas tolaasii NCPPB 2192, and pyoverdins Pf, siderophores of Pseudomonas fluorescens CCM 2798. Identification of an unusual natural amino acid. Biochemistry 29:11041–11051.
60. Morikawa M, Daido H, Takao T, et al (1993) A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J Bacteriol 175:6459–6466.