1. Strong, V.E., Progress in gastric cancer. Updates Surg, 2018. 70(2): p. 157-159.
2. Venerito, M., et al., Gastric cancer: epidemiology, prevention, and therapy. Helicobacter, 2018. 23 Suppl 1: p. e12518.
3. Strong, V.E., et al., Differences in gastric cancer survival between the U.S. and China. J Surg Oncol, 2015. 112(1): p. 31-7.
4. Digklia, A. and A.D. Wagner, Advanced gastric cancer: Current treatment landscape and future perspectives. World J Gastroenterol, 2016. 22(8): p. 2403-14.
5. Song, Z., et al., Progress in the treatment of advanced gastric cancer. Tumour Biol, 2017. 39(7): p. 1010428317714626.
6. Ohtsu, A., et al., Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J Clin Oncol, 2013. 31(31): p. 3935-43.
7. Weidle, U.H., et al., Long Non-coding RNAs and their Role in Metastasis. Cancer Genomics Proteomics, 2017. 14(3): p. 143-160.
8. Kondo, Y., K. Shinjo, and K. Katsushima, Long non-coding RNAs as an epigenetic regulator in human cancers. Cancer Sci, 2017. 108(10): p. 1927-1933.
9. Lin, M.T., H.J. Song, and X.Y. Ding, Long non-coding RNAs involved in metastasis of gastric cancer. World J Gastroenterol, 2018. 24(33): p. 3724-3737.
10. Jia, B., et al., Long noncoding RNA FALEC inhibits proliferation and metastasis of tongue squamous cell carcinoma by epigenetically silencing ECM1 through EZH2. Aging (Albany NY), 2019. 11(14): p. 4990-5007.
11. Zheng, Q.H., L. Shi, and H.L. Li, FALEC exerts oncogenic properties to regulate cell proliferation and cell-cycle in endometrial cancer. Biomed Pharmacother, 2019. 118: p. 109212.
12. Naizhaer, G., et al., Up-regulation of lncRNA FALEC indicates prognosis and diagnosis values in cervical cancer. Pathol Res Pract, 2019. 215(8): p. 152495.
13. Wu, H., et al., Downregulation of Long Non-coding RNA FALEC Inhibits Gastric Cancer Cell Migration and Invasion Through Impairing ECM1 Expression by Exerting Its Enhancer-Like Function. Front Genet, 2019. 10: p. 255.
14. Cao, Y., et al., Autophagy and its role in gastric cancer. Clin Chim Acta, 2019. 489: p. 10-20.
15. White, E., J.M. Mehnert, and C.S. Chan, Autophagy, Metabolism, and Cancer. Clin Cancer Res, 2015. 21(22): p. 5037-46.
16. Wang, P., et al., Autophagy in ischemic stroke. Prog Neurobiol, 2018. 163-164: p. 98-117.
17. Yang, X., et al., The role of autophagy induced by tumor microenvironment in different cells and stages of cancer. Cell Biosci, 2015. 5: p. 14.
18. Maes, H., et al., Autophagy: shaping the tumor microenvironment and therapeutic response. Trends Mol Med, 2013. 19(7): p. 428-46.
19. Levine, B. and G. Kroemer, Autophagy in the pathogenesis of disease. Cell, 2008. 132(1): p. 27-42.
20. Xin, L., et al., METase/lncRNA HULC/FoxM1 reduced cisplatin resistance in gastric cancer by suppressing autophagy. J Cancer Res Clin Oncol, 2019. 145(10): p. 2507-2517.
21. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001. 25(4): p. 402-8.
22. Zhao, R., et al., Upregulation of the long non-coding RNA FALEC promotes proliferation and migration of prostate cancer cell lines and predicts prognosis of PCa patients. Prostate, 2017. 77(10): p. 1107-1117.
23. Ni, N., et al., Up-regulation of long noncoding RNA FALEC predicts poor prognosis and promotes melanoma cell proliferation through epigenetically silencing p21. Biomed Pharmacother, 2017. 96: p. 1371-1379.
24. Xiao, X., et al., LncRNA FALEC promotes proliferation, migration, and invasion of PTC cells through regulating Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci, 2020. 24(8): p. 4361-4367.
25. Salmena, L., et al., A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011. 146(3): p. 353-8.
26. Tay, Y., J. Rinn, and P.P. Pandolfi, The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014. 505(7483): p. 344-52.
27. Guo, L.L., et al., Competing endogenous RNA networks and gastric cancer. World J Gastroenterol, 2015. 21(41): p. 11680-7.
28. Cortez, M.A., et al., Role of miRNAs in immune responses and immunotherapy in cancer. Genes Chromosomes Cancer, 2019. 58(4): p. 244-253.
29. Riquelme, I., et al., Emerging Role of miRNAs in the Drug Resistance of Gastric Cancer. Int J Mol Sci, 2016. 17(3): p. 424.
30. Yang, W., et al., Molecular mechanisms and theranostic potential of miRNAs in drug resistance of gastric cancer. Expert Opin Ther Targets, 2017. 21(11): p. 1063-1075.
31. Liu, W., et al., Downregulation of Potential Tumor Suppressor miR-203a by Promoter Methylation Contributes to the Invasiveness of Gastric Cardia Adenocarcinoma. Cancer Invest, 2016. 34(10): p. 506-516.
32. Liu, Y., et al., Methylation-mediated repression of potential tumor suppressor miR-203a and miR-203b contributes to esophageal squamous cell carcinoma development. Tumour Biol, 2016. 37(4): p. 5621-32.
33. Bhalla, S., et al., Prediction and Analysis of Skin Cancer Progression using Genomics Profiles of Patients. Sci Rep, 2019. 9(1): p. 15790.
34. Yang, Z., et al., LINC02595 promotes tumor progression in colorectal cancer by inhibiting miR-203b-3p activity and facilitating BCL2L1 expression. J Cell Physiol, 2020. 235(10): p. 7449-7464.
35. Rupaimoole, R. and F.J. Slack, MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov, 2017. 16(3): p. 203-222.
36. Lu, T.X. and M.E. Rothenberg, MicroRNA. J Allergy Clin Immunol, 2018. 141(4): p. 1202-1207.
37. Asati, V., D.K. Mahapatra, and S.K. Bharti, PIM kinase inhibitors: Structural and pharmacological perspectives. Eur J Med Chem, 2019. 172: p. 95-108.
38. Fan, X., et al., Effect of Pim-3 Downregulation on Proliferation and Apoptosis in Lung Adenocarcinoma A549 Cells. Ann Clin Lab Sci, 2019. 49(6): p. 770-776.
39. Wu, F., et al., MicroRNA-101-3p regulates gastric cancer cell proliferation, invasion and apoptosis by targeting PIM 1 expression. Cell Mol Biol (Noisy-le-grand), 2019. 65(7): p. 118-122.
40. Qu, Y., et al., Pim-3 is a Critical Risk Factor in Development and Prognosis of Prostate Cancer. Med Sci Monit, 2016. 22: p. 4254-4260.
41. Zhou, Z., et al., Expression of Pim-3 in colorectal cancer and its relationship with prognosis. Tumour Biol, 2016. 37(7): p. 9151-6.
42. Li, T., et al., Pim-3 Regulates Stemness of Pancreatic Cancer Cells via Activating STAT3 Signaling Pathway. J Cancer, 2017. 8(9): p. 1530-1541.
43. Zhang, R.X., et al., Pim-3 as a potential predictor of chemoradiotherapy resistance in locally advanced rectal cancer patients. Sci Rep, 2017. 7(1): p. 16043.
44. Liu, J., et al., Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation. Cancer Biol Ther, 2018. 19(3): p. 160-168.
45. Jin, X., Z. Zhu, and Y. Shi, Metastasis mechanism and gene/protein expression in gastric cancer with distant organs metastasis. Bull Cancer, 2014. 101(1): p. E1-12.
46. Su, Z., et al., Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer, 2015. 14: p. 48.
47. Li, G.M., et al., DAPK3 inhibits gastric cancer progression via activation of ULK1-dependent autophagy. Cell Death Differ, 2021. 28(3): p. 952-967.
48. Lv, G.B., et al., Vortioxetine induces apoptosis and autophagy of gastric cancer AGS cells via the PI3K/AKT pathway. FEBS Open Bio, 2020. 10(10): p. 2157-2165.