Alavash, M., Tune, S., Obleser, J., 2019. Modular reconfiguration of an auditory control brain network supports adaptive listening behavior. PNAS USA. 116, 660–669. https://doi.org/10.1073/pnas.1815321116
Allen, J.S., et al., 2008. Morphology of the insula in relation to hearing status and sign language experience. Neuroscience. 12, 11900-11905. https://doi: 10.1523/JNEUROSCI.3141-08.2008.
Almeida, J., et al., 2015. Decoding visual location from neural patterns in the auditory cortex of the congenitally deaf. Psychol. Sci. 26, 1771–1782. https://doi.org/10.1177/0956797615598970
Ashburner, J., Friston, K. J., 2005. Unified segmentation. NeuroImage. 26, 839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018
Astle, D. E., Scerif, G., 2009. Using developmental cognitive neuroscience to study behavioral and attentional control. Dev. Psychobiol. 51, 107–118. https://doi.org/10.1002/dev.20350
Auer, E. T., Jr., et al., 2007. Vibrotactile activation of the auditory cortices in deaf versus hearing adults. NeuroReport. 18, 645–648. https://doi.org/10.1097/WNR.0b013e3280d943b9
Bavelier, D., Dye, M. W., Hauser, P. C., 2006. Do deaf individuals see better? Trends Cogn. Sci.10, 512–518. https://doi.org/10.1016/j.tics.2006.09.006
Bavelier, D., Neville, H. J., 2002. Cross-modal plasticity: where and how? Nat. Rev. Neurosci. 3, 443–452. https://doi.org/10.1038/nrn848
Bavelier, D., et al., 2008. Ordered short-term memory differs in signers and speakers: implications for models of short-term memory. Cognition. 107, 433–459. http://doi: 10.1016/j.cognition.2007.10.012.
Binder, J. R., et al., 2009. Where is the semantic system? A critical review and meta-analysis of 120 functional neuro imaging studies. Cereb. Cortex. 19, 2767–2796. https://doi.org/10.1093/cercor/bhp055
Bonilha, L., et al., 2017. Temporal lobe networks supporting the comprehension of spoken words. Brain. 140, 2370–2380. https://doi.org/10.1093/brain/awx169
Bonna, K., et al., 2021. Early deafness leads to re-shaping of global functional connectivity beyond the auditory cortex. Brain Imaging Behav.15:1469–1482. https://doi.org/10.1007/s11682-020-00346-y
Birn, R.M., 2012. The role of physiological noise in resting-state functional connectivity. Neuroimage. 62, 864–870. https://doi.org/10.1016/j.neuroimage.2012.01.016
Buckley, D., et al., 2010. Action video game players and deaf observers have larger Goldmann visual fields. Vis. Res. 50, 548–556. https://doi.org/10.1016/j.visres.2009.11.018
Butler, B. E., et al., 2018. Cortical and thalamic connectivity to the second auditory cortex of the cat is resilient to the onset of deafness. Brain Struct Funct. 223, 819–835. https://doi.org/10.1007/s00429-017-1523-y
Cabeza, R., Nyberg, L., 2000. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47. https://doi.org/10.1162/08989290051137585
Cardin, V., et al., 2013. Dissociating cognitive and sensory neural plasticity in human superior temporal cortex. Nat. Commun. 4, 1473. https://doi.org/10.1038/ncomms2463
Chen, Q., Zhang, M., Zhou, X., 2006. Effects of spatial distribution of attention during inhibition of return (IOR) on flanker interference in hearing and congenitally deaf people. Brain Res. 1109, 117–127. https://doi.org/10.1016/j.brainres.2006.06.043
Codina, C., et al., 2011. Deaf and hearing children: a comparison of peripheral vision development. Dev. Sci. 14, 725–737. https://doi.org/10.1111/j.1467-7687.2010.01017.x
Conway, C. M., Pisoni, D. B., Kronenberger, W. G., 2009.. The importance of sound for cognitive sequencing abilities: the auditory scaffolding hypothesis. Curr Dir Psychol Sci. 18, 275–279. https://doi.org/10.1111/j.1467-8721.2009.01651.x
Cupples, L., et al., 2018. Language development in deaf or hard-of-hearing children with additional disabilities: type matters! J. Intellect. Disabil. 62, 532–543. https://doi.org/10.1111/jir.12493
Daza, M. T., Phillips-Silver, J., 2013. Development of attention networks in deaf children: support for the integrative hypothesis. Res Dev Disabil. 34, 2661–2668. https://doi.org/10.1016/j.ridd.2013.05.012
Daza, M. T., et al., 2014. Language skills and nonverbal cognitive processes associated with reading comprehension in deaf children. Res Dev Disabil. 35, 3526–3533. https://doi.org/10.1016/j.ridd.2014.08.030
Ding, H., et al., 2016. Enhanced spontaneous functional connectivity of the superior temporal gyrus in early deafness. Sci. Rep. 6, 23239. https://doi.org/10.1038/srep23239
Ding, H., et al., 2015. Cross-modal activation of auditory regions during visuo-spatial working memory in early deafness. Brain. 138, 2750–2765. https://doi.org/10.1093/brain/awv165
Dosenbach, N. U., et al., 2008. A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105. https://doi.org/10.1016/j.tics.2008.01.001
Dye, M. W., Baril, D. E., Bavelier, D., 2007. Which aspects of visual attention are changed by deafness? The case of the Attentional Network Test. Neuropsychologia. 45, 1801–1811. https://doi.org/10.1016/j.neuropsychologia.2006.12.019
Dye, M. W., Bavelier, D., 2010. Attentional enhancements and deficits in deaf populations: an integrative review. Restor. Neurol. Neurosci. 28, 181–192. https://doi.org/10.3233/RNN-2010-0501
Dye, M. W., Green, C. S., Bavelier, D., 2009. The development of attention skills in action video game players. Neuropsychologia. 47, 1780–1789. https://doi.org/10.1016/j.neuropsychologia.2009.02.002
Etkin, A., Egner, T., Kalisch, R., 2011. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15, 85–93. https://doi.org/10.1016/j.tics.2010.11.004
Finney, E. M., et al., 2003. Visual stimuli activate auditory cortex in deaf participants: evidence from MEG. NeuroReport. 14, 1425–1427. https://doi.org/10.1097/00001756-200308060-00004
Finney, E. M., Fine, I., Dobkins, K. R., 2001. Visual stimuli activate auditory cortex in the deaf. Nat. Neurosci. 4, 1171–1173. https://doi.org/10.1038/nn763
Fischl, B., 2012. FreeSurfer. Neuroimage. 62, 774–781. http://doi: 10.1016/j.neuroimage.2012.01.021
Fox, M. D., et al., 2006. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. PNAS USA. 103, 10046–10051. https://doi.org/10.1073/pnas.0604187103
Fox, M. D., et al., 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. PNAS USA. 102, 9673–9678. https://doi.org/10.1073/pnas.0504136102
Greicius, M. D., et al., 2004. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. PNAS USA. 101, 4637–4642. https://doi.org/10.1073/pnas.0308627101
Gusnard, D. A., et al., 2001. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. PNAS USA. 98, 4259–4264. https://doi.org/10.1073/pnas.071043098
Hall, M. L., et al., 2018. Executive function in deaf children: auditory access and language access. J. Speech Lang. Hear. Res. 61, 1970–1988. https://doi.org/10.1044/2018_JSLHR-L-17-0281
Hallam, R. S., Corney, R., 2014. Conversation tactics in persons with normal hearing and hearing-impairment. Int. J. Audiol. 53, 174–181. https://doi.org/10.3109/14992027.2013.852256
Hine, J., et al., 2008. Does long-term unilateral deafness change auditory evoked potential asymmetries? Clin Neurophysiol. 119, 576–586. https://doi.org/10.1016/j.clinph.2007.11.010
Horn, D. L., et al., 2005. Development of visual attention skills in prelingually deaf children who use cochlear implants. Ear Hear. 26, 389–408. https://doi.org/10.1097/00003446-200508000-00003
Hu, X., et al., 1995. Retrospective estimation and correction of physiological fluctuation in functional MRI. Magn Reson Med. 34, 201–212. https://doi.org/10.1002/mrm.1910340211
Husain, F. T., Carpenter-Thompson, J. R., Schmidt, S. A., 2014. The effect of mild-to-moderate hearing loss on auditory and emotion processing networks. Front. Syst. Neurosci. 8, 10. https://doi.org/10.3389/fnsys.2014.00010
Ibañez, A., Gleichgerrcht, E., Manes, F., 2010. Clinical effects of insular damage in humans. Brain Struct and Funct. 214, 397–410. https://doi.org/10.1007/s00429-010-0256-y
Karns, C. M., Dow, M. W., Neville, H. J., 2012. Altered cross-modal processing in the primary auditory cortex of congenitally deaf adults: a visual-somatosensory fMRI study with a double-flash illusion. J. Neurosci. 32, 9626–9638. https://doi.org/10.1523/JNEUROSCI.6488-11.2012
Kennedy, D. P., Redcay, E., Courchesne, E., 2006. Failing to deactivate: resting functional abnormalities in autism. PNAS USA. 103, 8275–8280. https://doi.org/10.1073/pnas.0600674103
Kral, A., et al., 2016. Neurocognitive factors in sensory restoration of early deafness: a connectome model. Lancet. Neurol. 15, 610–621. https://doi.org/10.1016/S1474-4422(16)00034-X
Kuppler, K., Lewis, M., Evans, A. K., 2013. A review of unilateral hearing loss and academic performance: is it time to reassess traditional dogmata? Int. J. Pediatr. Otorhinolaryngol. 77, 617–622. https://doi.org/10.1016/j.ijporl.2013.01.014
Lafer-Sousa, R., Conway, B. R., 2013. Parallel, multi-stage processing of colors, faces and shapes in macaque inferior temporal cortex. Nat. Neurosci. 16, 1870–1878. https://doi.org/10.1038/nn.3555
Leech, R., et al., 2011. Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J. Neurosci. 31, 3217–3224. https://doi.org/10.1523/JNEUROSCI.5626-10.2011
Levänen, S., Jousmäki, V., Hari, R., 1998. Vibration-induced auditory-cortex activation in a congenitally deaf adult. Curr. Biol. 8, 869–872. https://doi.org/10.1016/s0960-9822(07)00348-x
Li, Y., Booth, et al., 2013. Altered intra- and inter-regional synchronization of superior temporal cortex in deaf people. Cereb. Cortex. 23, 1988–1996. https://doi.org/10.1093/cercor/bhs185
Lieu, J. E., Tye-Murray, N., Fu, Q., 2012. Longitudinal study of children with unilateral hearing loss. Laryngoscope. 122, 2088–2095. https://doi.org/10.1002/lary.23454
Liu, B., et al., 2015. Functional connectivity in patients with sensorineural hearing loss using resting-state MRI. Am. J. Audiol. 24, 145–152. https://doi.org/10.1044/2015_AJA-13-0068
Liu, Y., et al., 2007. Whole brain functional connectivity in the early blind. Brain. 130, 2085–2096. https://doi.org/10.1093/brain/awm121
Menon, V., 2011. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506. https://doi.org/10.1016/j.tics.2011.08.003
Menon, V., Uddin, L. Q., 2010. Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214, 655–667. https://doi.org/10.1007/s00429-010-0262-0
Meyer, M., et al., 2007. Neuroplasticity of sign language: implications from structural and functional brain imaging. Restor. Neurol. Neurosci. 25, 335–351.
Mitchell, T. V., Quittner, A. L., 1996. Multimethod study of attention and behavior problems in hearing-impaired children. J. Clin. Child Psychol. 25, 83–96. https://doi.org/10.1207/s15374424jccp2501_10
Neville, H. J., Lawson, D., 1987. Attention to central and peripheral visual space in a movement detection task. III. Separate effects of auditory deprivation and acquisition of a visual language. Brain Res. 405, 284–294. https://doi.org/10.1016/0006-8993(87)90297-6
Petitto, L. A., et al., 2000. Speech-like cerebral activity in profoundly deaf people processing signed languages: implications for the neural basis of human language. PNAS USA. 97, 13961–13966. https://doi.org/10.1073/pnas.97.25.13961
Proksch, J., Bavelier, D., 2002. Changes in the spatial distribution of visual attention after early deafness. J. Cogn. Neurosci. 14, 687–701. https://doi.org/10.1162/08989290260138591
Puschmann, S., Thiel, C. M., 2017. Changed crossmodal functional connectivity in older adults with hearing loss. Cortex. 86, 109–122. https://doi.org/10.1016/j.cortex.2016.10.014
Quittner, A. L., et al., 1994. The impact of audition on the development of visual attention. Psychol. Sci. 5, 347–353. https://doi.org/10.1111/j.1467-9280.1994.tb00284.x
Rangel, A., Camerer, C., Montague, P. R., 2008. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9, 545–556. https://doi.org/10.1038/nrn2357
Sadato, N., et al., 2005. Cross-modal integration and plastic changes revealed by lip movement, random-dot motion and sign languages in the hearing and deaf. Cereb. Cortex. 15, 1113–1122. https://doi.org/10.1093/cercor/bhh210
Schmidt, S. A., et al., 2013. Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss. PLOS ONE. 8, e76488. https://doi.org/10.1371/journal.pone.0076488
Schmithorst, V. J., Plante, E., Holland, S., 2014. Unilateral deafness in children affects development of multi-modal modulation and default mode networks. Front. Hum. Neurosci. 8, 164. https://doi.org/10.3389/fnhum.2014.00164
Scott, G. D., et al., 2014. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex. Front. Hum. Neurosci. 8, 177. https://doi.org/10.3389/fnhum.2014.00177
Seeley, W. W., et al., 2007. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007
Seghier, M. L., 2013. The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist. 19, 43–61. https://doi.org/10.1177/1073858412440596
Sladen, D. P., et al., 2005. Visual attention in deaf and normal hearing adults: effects of stimulus compatibility. J Speech Lang Hear Res. 48, 1529–1537. https://doi.org/10.1044/1092-4388(2005/106)
Smith, K. M., et al., 2011. Morphometric differences in the heschl’s gyrus of hearing impaired and normal hearing infants. Cereb. Cortex. 21, 991–998. https://doi.org/10.1093/cercor/bhq164
Sridharan, D., et al., 2008. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. PNAS USA. 105, 12569–12574. https://doi.org/10.1073/pnas.0800005105
Stein, M. B., et al., 2007. Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am. J. Psychiatry. 164, 318–327. https://doi.org/10.1176/ajp.2007.164.2.318
Tibbetts, K., et al., 2011. Interregional brain interactions in children with unilateral hearing loss. Otolaryngol. Head Neck Surg. 144, 602–611. https://doi.org/10.1177/0194599810394954
Tustison, N. J., et al., 2010. "N4ITK: improved N3 bias orrection". IEEE Trans Med Imaging. 29, 1310–1320. http:// doi. org/10.1109/TMI.2010.2046908
Vannini, P., et al., 2011. What goes down must come up: role of the posteromedial cortices in encoding and retrieval. Cereb. Cortex. 21, 22–34. https://doi.org/10.1093/cercor/bhq051
Víctor Martínez-Cagigal (2021). Multiple Testing Toolbox (https://www.mathworks.com/matlabcentral/fileexchange/70604-multiple-testing-toolbox), MATLAB Central File Exchange. Retrieved October 21, 2021.
Wang, X., et al., 2014. Altered regional and circuit resting-state activity associated with unilateral hearing loss. PLOS ONE. 9, e96126. https://doi.org/10.1371/journal.pone.0096126
Wauters, L. N., et al., 2006. In search of factors in deaf and hearing children’s reading comprehension. Am Ann Deaf. 151, 371–380. https://doi.org/10.1353/aad.2006.0041
Wong, P. C., et al., 2008. Volume of left Heschl’s gyrus and linguistic pitch learning. Cereb Cortex. 18, 828–836. https://doi.org/10.1093/cercor/bhm115
Yan, C.G., et al., 2016. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics.14,339-351.
Yucel, E., Derim, D., 2008. The effect of implantation age on visual attention skills. Int. J. Pediatr. Otorhinolaryngol. 72, 869–877. https://doi.org/10.1016/j.ijporl.2008.02.017
Zhang, G. Y., et al., 2016. Changes of the directional brain networks related with brain plasticity in patients with long-term unilateral sensorineural hearing loss. Neuroscience. 313, 149–161. https://doi.org/10.1016/j.neuroscience.2015.11.042