[1] R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018, CA: Cancer J. Clin. 68 (2018) 7–30. https://doi.org/10.3322/caac.21442.
[2] M.T. Moyer, R.R. Gaffney, Pancreatic adenocarcinoma, N. Engl. J. Med. 371 (2014) 2140. https://doi.org/10.1056/NEJMc1412266.
[3] C.S. Nowell, F. Radtke, Notch as a tumour suppressor, Nat. Rev. Cancer 17 (2017) 145–159. https://doi.org/10.1038/nrc.2016.145.
[4] O. Meurette, P. Mehlen, Notch signaling in the tumor microenvironment, Cancer Cell 34 (2018) 536–548. https://doi.org/10.1016/j.ccell.2018.07.009.
[5] S. Sawaguchi, S. Varshney, M. Ogawa, Y. Sakaidani, H. Yagi, K. Takeshita, T. Murohara, K. Kato, S. Sundaram, P. Stanley, T. Okajima, O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals, Elife 6 (2017) e24419. https://doi.org/10.7554/ eLife.24419.
[6] K.C. Schröder, D. Duman, M. Tekin, D. Schanze, M. Sukalo, J. Meester, W. Wuyts, M. Zenker, Adams–Oliver syndrome caused by mutations of the EOGT gene, Am. J. Med. Genet. A 179 (2019) 2246–2251. https://doi.org/10.1002/ajmg.a.61313.
[7] Z. Zhang, H. Han, Y. Rong, K. Zhu, Z. Zhu, Z. Tang, C. Xiong, J. Tao, Hypoxia potentiates gemcitabine-induced stemness in pancreatic cancer cells through AKT/Notch1 signaling, J. Exp. Clin. Cancer Res. 37 (2018) 291–291. https://doi.org/10.1186/ s13046-018-0972-3.
[8] S. Kunnimalaiyaan, J. Trevino, S. Tsai, T.C. Gamblin, M. Kunnimalaiyaan, Xanthohumol-mediated suppression of Notch1 signaling is associated with antitumor activity in human pancreatic cancer cells, Mol. Cancer Ther. 14 (2015) 1395–1403. https://doi.org/10.1158/1535-7163. MCT-14-0915.
[9] R. Schmandt, S.K. Liu, C.J. McGlade, Cloning and characterization of mPAL, a novel Shc SH2 domain-binding protein expressed in proliferating cells, Oncogene 18 (1999) 1867–1879. https://doi.org/10.1038/sj.onc.1202507.
[10] E. Asano, H. Hasegawa, T. Hyodo, S. Ito, M. Maeda, D. Chen, M. Takahashi, M. Hamaguchi, T. Senga, SHCBP1 is required for midbody organization and cytokinesis completion, Cell Cycle 13 (2014) 2744–2751. https://doi.org/10.4161/15384101. 2015.945840.
[11] J. Chen, F. Lai, L. Niswander, The ubiquitin ligase mLin41 temporally promotes neural progenitor cell maintenance through FGF signaling, Genes Dev. 26 (2012) 803–815. https://doi.org/10.1101/gad.187641.112.
[12] W. Feng, H.C. Li, K. Xu, Y.F. Chen, L.Y. Pan, Y. Mei, H. Cai, Y.M. Jiang, T. Chen, D.X. Feng, SHCBP1 is over-expressed in breast cancer and is important in the proliferation and apoptosis of the human malignant breast cancer cell line, Gene 587 (2016) 91–97. https://doi.org/10.1016/j.gene.2016.04.046.
[13] L. Liu, Y. Yang, S. Liu, T. Tao, J. Cai, J. Wu, H. Guan, X. Zhu, Z. He, J. Li, E. Song, M. Zeng, M. Li, EGF-induced nuclear localization of SHCBP1 activates β-catenin signalingand promotes cancer progression, Oncogene 38 (2018) 747–764. https://doi.org/ 10.1038/s41388- 018-0473-z.
[14] N. Xu, Y.P. Wu, H.B. Yin, S.H. Chen, X.D. Li, X.Y. Xue, X. Gou, SHCBP1 promotes tumor cell proliferation, migration, and invasion, and is associated with poor prostate cancer prognosis, J. Cancer Res. Clin. Oncol. 146 (2020) 1953–1969. https://doi.org/10.1007/s00432-020-03247-1.
[15] R. Shah, K.T. Ostapoff, B. Kuvshinoff, S.N. Hochwald, Ablative therapies for locally advanced pancreatic cancer, Pancreas 47 (2018) 6–11. https://doi.org/10.1097/mpa. 0000000000000948.
[16] G.Y. Zhang, Z.J. Ma, L. Wang, R.F. Sun, X.Y. Jiang, X.J. Yang, B. Long, H.L. Ye, S.Z. Zhang, Z.Y. Yu, W.G. Shi, Z.Y. Jiao, The role of Shcbp1 in signaling and disease, Curr. Cancer Drug Targets 19 (2019) 854–862. https://doi.org/10.2174/ 1568009619666190620 114928.
[17] N. Wang, M.Y. Li, Y. Liu, J. Yu, J. Ren, Z. Zheng, S. Wang, S. Yang, S.L. Yang, L.P. Liu, B.G. Hu, C.C. Chong, J.L. Merchant, P.B. Lai, G.G. Chen, ZBP-89 negatively regulates self-renewal of liver cancer stem cells via suppression of Notch1 signaling pathway, Cancer Lett. 472 (2020) 70–80. https://doi.org/10.1016/j.canlet.2019.12.026.
[18] Y. Chen, Z. Li, M. Zhang, B. Wang, J. Ye, Y. Zhang, D. Tang, D. Ma, W. Jin, X. Li, S. Wang, Circ-ASH2L promotes tumor progression by sponging miR-34a to regulate Notch1 in pancreatic ductal adenocarcinoma, J. Exp. Clin. Cancer Res. 38 (2019) 466–466. https://doi.org/10.1186/s13046-019-1436-0.
[19] J. Lee, J. Lee, J.H. Kim, Association of Jagged1 expression with malignancy and prognosis in human pancreatic cancer, Cell. Oncol. (2020). https://doi.org/10.1007/ s13402-020-00527-3.
[20] K. Song, Q. Li, Y.B. Peng, J. Li, K. Ding, L.J. Chen, C.H. Shao, L.J. Zhang, P. Li, Silencing of hHS6ST2 inhibits progression of pancreatic cancer through inhibition of Notch signalling, Biochem. J. 436 (2011) 271–282. https://doi.org/10.1042/bj20110297.
[21] X. Yang, K. Qian, Protein O-GlcNAcylation: emerging mechanisms and functions, Nat. Rev. Mol. Cell Biol. 18 (2017) 452–465. https://doi.org/10.1038/nrm.2017.22.
[22] A.B. Stittrich, A. Lehman, D.L. Bodian, J. Ashworth, Z. Zong, H. Li, P. Lam, A. Khromykh, R.K. Iyer, J.G. Vockley, R. Baveja, E.S. Silva, J. Dixon, E.L. Leon, B.D. Solomon, G. Glusman, J.E. Niederhuber, J.C. Roach, M.S. Patel, Mutations in NOTCH1 cause Adams-Oliver syndrome, Am. J. Hum. Genet. 95 (2014) 275–284. https://doi.org/10.1016/j.ajhg.2014.07.011.
[23] Z. Liu, E. Brunskill, B. Varnum-Finney, C. Zhang, A. Zhang, P.Y. Jay, I. Bernstein, M. Morimoto, R. Kopan, The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis, Development 142 (2015) 2452–2463. https://doi.org/10.1242/dev.125492.
[24] H. Zhou, L. Gao, Z.H. Yu, S.J. Hong, Z.W. Zhang, Z.Z. Qiu, LncRNA HOTAIR promotes renal interstitial fibrosis by regulating Notch1 pathway via the modulation of miR‐124, Nephrology 24 (2019) 472–480. https://doi.org/10.1111/nep.13394.
[25] D.H. Luo, Q. Zhou, S.K. Hu, Y.Q. Xia, C.C. Xu, T.S. Lin, Y.T. Pan, J.S. Wu, R. Jin, Differential expression of Notch1 intracellular domain and p21 proteins, and their clinical significance in gastric cancer, Oncol. Lett. 7 (2013) 471–478.https://doi.org/10.3892/ol. 2013.1751.
[26] Lu H Y , Chu H X , Tan Y X , et al. Novel ADAM-17 inhibitor ZLDI-8 inhibits the metastasis of hepatocellular carcinoma by reversing epithelial-mesenchymal transition in vitro and in vivo[J]. Life ences, 2020, 244:117343. https://doi.org/10.1016/ j.lfs.2020.117343
[27] T. Hamidi, C.E. Cano, D. Grasso, M.N. Garcia, M.J. Sandi, E.L. Calvo, et al., Nupr1- aurora kinase A pathway provides protection against metabolic stress-mediated autophagic-associated cell death, Clin. Cancer Res. 18 (2012) 5234e5246. https://doi.org/
10.1158/1078-0432.CCR-12-0026
[28] S. Chen, J. Chen, Q. Zhan, Y. Zhu, H. Chen, X. Deng, et al., H2AK119Ub1 and H3K27Me3 in molecular staging for survival prediction of patients with pancreatic ductal adenocarcinoma, Oncotarget 5 (2014) 10421.
[29] Tang D , Yan T , Zhang J , et al. Notch1 Signaling Contributes to Hypoxia-induced High Expression of Integrin β1 in Keratinocyte Migration[J]. Scientific Reports, 2017, 7:43926. https://doi.org/10.18632/oncotarget.2126
[30] AlkholiefM , Campbell R B . Investigating the role of mucin in the delivery of nanoparticles to cellular models of human cancer disease: an in vitro study[J]. Nanomedicine, 2016:1291-1302. https://doi.org/10.1016/j.nano.2016.01.007