Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classical probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions has the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classical probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. This hidden generic variable appears to be such an archetype.