Superposed wavefunctions in quantum mechanics lead to a squared amplitude that introduces interference into a probability density, which has long been a puzzle because interference between probability densities exists nowhere else in probability theory. In recent years, Man’ko and coauthors have successfully reconciled quantum and classic probability using a symplectic tomographic model. Nevertheless, there remains an unexplained coincidence in quantum mechanics, namely, that mathematically, the interference term in the squared amplitude of superposed wavefunctions gives the squared amplitude the form of a variance of a sum of correlated random variables, and we examine whether there could be an archetypical variable behind quantum probability that provides a mathematical foundation that observes both quantum and classic probability directly. The properties that would need to be satisfied for this to be the case are identified, and a generic hidden variable that satisfies them is found that would be present everywhere, transforming into a process-specific variable wherever a quantum process is active. Uncovering this variable confirms the possibility that it is the stochastic archetype of quantum probability.