[1] R.A. Ward, S. Fawell, N. Floc'h, V. Flemington, D. McKerrecher, P.D. Smith, Challenges and Opportunities in Cancer Drug Resistance, Chem Rev, 121 (2021) 3297-3351.
[2] M. Rafehi, A. Neumann, Y. Baqi, E.M. Malik, M. Wiese, V. Namasivayam, C.E. Müller, Molecular Recognition of Agonists and Antagonists by the Nucleotide-Activated G Protein-Coupled P2Y2 Receptor, J Med Chem, 60 (2017) 8425-8440.
[3] E. Gregori-Puigjané, V. Setola, J. Hert, B.A. Crews, J.J. Irwin, E. Lounkine, L. Marnett, B.L. Roth, B.K. Shoichet, Identifying mechanism-of-action targets for drugs and probes, Proc Natl Acad Sci U S A, 109 (2012) 11178-11183.
[4] D. Mendez, A. Gaulton, A.P. Bento, J. Chambers, M. De Veij, E. Félix, María P. Magariños, Juan F. Mosquera, P. Mutowo, M. Nowotka, M. Gordillo-Marañón, F. Hunter, L. Junco, G. Mugumbate, M. Rodriguez-Lopez, F. Atkinson, N. Bosc, Chris J. Radoux, A. Segura-Cabrera, A. Hersey, Andrew R. Leach, ChEMBL: towards direct deposition of bioassay data, Nucleic Acids Res, 47 (2019) D930-D940.
[5] M. Wirth, V. Zoete, O. Michielin, W.H. Sauer, SwissBioisostere: a database of molecular replacements for ligand design, Nucleic Acids Res, 41 (2013) D1137-1143.
[6] M. Tuyishime, R. Lawrence, S. Cocklin, Core chemotype diversification in the HIV-1 entry inhibitor class using field-based bioisosteric replacement, Bioorg Med Chem Lett, 26 (2016) 228-234.
[7] P. Ertl, Identification of Bioisosteric Substituents by a Deep Neural Network, J Chem Inf Model, 60 (2020) 3369-3375.
[8] C.R. Groom, I.J. Bruno, M.P. Lightfoot, S.C. Ward, The Cambridge Structural Database, Acta Crystallogr B Struct Sci Cryst Eng Mater, 72 (2016) 171-179.
[9] J.C. Cole, O. Korb, P. McCabe, M.G. Read, R. Taylor, Knowledge-Based Conformer Generation Using the Cambridge Structural Database, J Chem Inf Model, 58 (2018) 615-629.
[10] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The Protein Data Bank, Nucleic Acids Res, 28 (2000) 235-242.
[11] F.M.I. Hunter, A.P. Bento, N. Bosc, A. Gaulton, A. Hersey, A.R. Leach, Drug Safety Data Curation and Modeling in ChEMBL: Boxed Warnings and Withdrawn Drugs, Chem Res Toxicol, 34 (2021) 385-395.
[12] F.H. Allen, C.R. Groom, J.W. Liebeschuetz, D.A. Bardwell, T.S. Olsson, P.A. Wood, The hydrogen bond environments of 1H-tetrazole and tetrazolate rings: the structural basis for tetrazole-carboxylic acid bioisosterism, J Chem Inf Model, 52 (2012) 857-866.
[13] E.A. Kennewell, P. Willett, P. Ducrot, C. Luttmann, Identification of target-specific bioisosteric fragments from ligand-protein crystallographic data, J Comput Aided Mol Des, 20 (2006) 385-394.
[14] M.P. Seddon, D.A. Cosgrove, V.J. Gillet, Bioisosteric Replacements Extracted from High-Quality Structures in the Protein Databank, ChemMedChem, 13 (2018) 607-613.
[15] D.J. Wood, J. de Vlieg, M. Wagener, T. Ritschel, Pharmacophore fingerprint-based approach to binding site subpocket similarity and its application to bioisostere replacement, J Chem Inf Model, 52 (2012) 2031-2043.
[16] R. Khashan, FragVLib a free database mining software for generating "Fragment-based Virtual Library" using pocket similarity search of ligand-receptor complexes, J Cheminform, 4 (2012) 18.
[17] J. Desaphy, D. Rognan, sc-PDB-Frag: a database of protein-ligand interaction patterns for Bioisosteric replacements, J Chem Inf Model, 54 (2014) 1908-1918.
[18] S. Lešnik, B. Škrlj, N. Eržen, U. Bren, S. Gobec, J. Konc, D. Janežič, BoBER: web interface to the base of bioisosterically exchangeable replacements, J Cheminform, 9 (2017) 62.
[19] J. Konc, D. Janežič, ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites, Nucleic Acids Res, 42 (2014) W215-220.
[20] J. Shan, X. Pan, X. Wang, X. Xiao, C. Ji, FragRep: A Web Server for Structure-Based Drug Design by Fragment Replacement, J Chem Inf Model, 60 (2020) 5900-5906.
[21] A. Del-Corso, M. Cappiello, R. Moschini, F. Balestri, U. Mura, P.L. Ipata, The furanosidic scaffold of d-ribose: a milestone for cell life, Biochem Soc Trans, 47 (2019) 1931-1940.
[22] C.A. Abbas, A.A. Sibirny, Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers, Microbiol Mol Biol Rev, 75 (2011) 321-360.
[23] J. Xu, N.J. Green, C. Gibard, R. Krishnamurthy, J.D. Sutherland, Prebiotic phosphorylation of 2-thiouridine provides either nucleotides or DNA building blocks via photoreduction, Nat Chem, 11 (2019) 457-462.
[24] A.J. Gustafsson, L. Muraro, C. Dahlberg, M. Migaud, O. Chevallier, H.N. Khanh, K. Krishnan, N. Li, M.S. Islam, ADP ribose is an endogenous ligand for the purinergic P2Y1 receptor, Mol Cell Endocrinol, 333 (2011) 8-19.
[25] C. Huang, J. Hu, K.P. Subedi, A.H. Lin, O. Paudel, P. Ran, J.S. Sham, Extracellular Adenosine Diphosphate Ribose Mobilizes Intracellular Ca2+ via Purinergic-Dependent Ca2+ Pathways in Rat Pulmonary Artery Smooth Muscle Cells, Cell Physiol Biochem, 37 (2015) 2043-2059.
[26] H.C. Lee, Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling, Sci China Life Sci, 54 (2011) 699-711.
[27] Y. Sun, Y. Ke, C. Li, J. Wang, L. Tu, L. Hu, Y. Jin, H. Chen, J. Gong, Z. Yu, Bifunctional and Unusual Amino Acid β- or γ-Ester Prodrugs of Nucleoside Analogues for Improved Affinity to ATB0,+ and Enhanced Metabolic Stability: An Application to Floxuridine, J Med Chem, 63 (2020) 10816-10828.
[28] A.M. Liao, B. Cai, J.H. Huang, M. Hui, K.K. Lee, K.Y. Lee, C. Chun, Synthesis, anticancer activity and potential application of diosgenin modified cancer chemotherapeutic agent cytarabine, Food Chem Toxicol, 148 (2021) 111920.
[29] S. Holzer, N.J. Rzechorzek, I.R. Short, M. Jenkyn-Bedford, L. Pellegrini, M.L. Kilkenny, Structural Basis for Inhibition of Human Primase by Arabinofuranosyl Nucleoside Analogues Fludarabine and Vidarabine, ACS Chem Biol, 14 (2019) 1904-1912.
[30] Y. Hu, Y. Liu, A. Coates, Azidothymidine Produces Synergistic Activity in Combination with Colistin against Antibiotic-Resistant Enterobacteriaceae, Antimicrob Agents Chemother, 63 (2019).
[31] S.R. Miller, R.K. Hau, J.L. Jilek, M.N. Morales, S.H. Wright, N.J. Cherrington, Nucleoside Reverse Transcriptase Inhibitor Interaction with Human Equilibrative Nucleoside Transporters 1 and 2, Drug Metab Dispos, 48 (2020) 603-612.
[32] C.K.J. Young, J.H. Wheeler, M.M. Rahman, M.J. Young, The antiretroviral 2',3'-dideoxycytidine causes mitochondrial dysfunction in proliferating and differentiated HepaRG human cell cultures, J Biol Chem, 296 (2021) 100206.
[33] S. Kandil, C. Pannecouque, F.M. Chapman, A.D. Westwell, C. McGuigan, Polyfluoroaromatic stavudine (d4T) ProTides exhibit enhanced anti-HIV activity, Bioorg Med Chem Lett, 29 (2019) 126721.
[34] R.V. Somu, D.J. Wilson, E.M. Bennett, H.I. Boshoff, L. Celia, B.J. Beck, C.E. Barry, 3rd, C.C. Aldrich, Antitubercular nucleosides that inhibit siderophore biosynthesis: SAR of the glycosyl domain, J Med Chem, 49 (2006) 7623-7635.
[35] B. Zhang, G.K. Wagner, K. Weber, C. Garnham, A.J. Morgan, A. Galione, A.H. Guse, B.V. Potter, 2'-deoxy cyclic adenosine 5'-diphosphate ribose derivatives: importance of the 2'-hydroxyl motif for the antagonistic activity of 8-substituted cADPR derivatives, J Med Chem, 51 (2008) 1623-1636.
[36] A.H. Guse, Second messenger function and the structure-activity relationship of cyclic adenosine diphosphoribose (cADPR), Febs j, 272 (2005) 4590-4597.
[37] V.C. Bailey, S.M. Fortt, R.J. Summerhill, A. Galione, B.V. Potter, Cyclic aristeromycin diphosphate ribose: a potent and poorly hydrolysable Ca(2+)-mobilising mimic of cyclic adenosine diphosphate ribose, FEBS Lett, 379 (1996) 227-230.
[38] K.P. Currie, K. Swann, A. Galione, R.H. Scott, Activation of Ca2+-dependent currents in cultured rat dorsal root ganglion neurones by a sperm factor and cyclic ADP-ribose, Mol Biol Cell, 3 (1992) 1415-1425.
[39] J.M. Swarbrick, R. Graeff, H. Zhang, M.P. Thomas, Q. Hao, B.V. Potter, Cyclic adenosine 5'-diphosphate ribose analogs without a "southern" ribose inhibit ADP-ribosyl cyclase-hydrolase CD38, J Med Chem, 57 (2014) 8517-8529.
[40] J. Xu, Z. Yang, W. Dammermann, L. Zhang, A.H. Guse, L.H. Zhang, Synthesis and agonist activity of cyclic ADP-ribose analogues with substitution of the northern ribose by ether or alkane chains, J Med Chem, 49 (2006) 5501-5512.
[41] A.H. Guse, Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP): novel regulators of Ca2+-signaling and cell function, Curr Mol Med, 2 (2002) 273-282.
[42] C. Cakir-Kiefer, H. Muller-Steffner, N. Oppenheimer, F. Schuber, Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD+ glycohydrolase-catalysed reactions: implication for CD38 signalling, Biochem J, 358 (2001) 399-406.
[43] T. Tsuzuki, N. Sakaguchi, T. Kudoh, S. Takano, M. Uehara, T. Murayama, T. Sakurai, M. Hashii, H. Higashida, K. Weber, A.H. Guse, T. Kameda, T. Hirokawa, Y. Kumaki, B.V. Potter, H. Fukuda, M. Arisawa, S. Shuto, Design and synthesis of cyclic ADP-4-thioribose as a stable equivalent of cyclic ADP-ribose, a calcium ion-mobilizing second messenger, Angew Chem Int Ed Engl, 52 (2013) 6633-6637.
[44] R.A. Tromp, S. van Ameijde, C. Pütz, C. Sundermann, B. Sundermann, J.K. von Frijtag Drabbe Künzel, I.J. AP, Inhibition of nucleoside transport by new analogues of 4-nitrobenzylthioinosine: replacement of the ribose moiety by substituted benzyl groups, J Med Chem, 47 (2004) 5441-5450.
[45] Q. Dang, S.R. Kasibhatla, K.R. Reddy, T. Jiang, M.R. Reddy, S.C. Potter, J.M. Fujitaki, P.D. van Poelje, J. Huang, W.N. Lipscomb, M.D. Erion, Discovery of potent and specific fructose-1,6-bisphosphatase inhibitors and a series of orally-bioavailable phosphoramidase-sensitive prodrugs for the treatment of type 2 diabetes, J Am Chem Soc, 129 (2007) 15491-15502.
[46] M.R. Reddy, M.D. Erion, Relative binding affinities of fructose-1,6-bisphosphatase inhibitors calculated using a quantum mechanics-based free energy perturbation method, J Am Chem Soc, 129 (2007) 9296-9297.
[47] M.D. Erion, Q. Dang, M.R. Reddy, S.R. Kasibhatla, J. Huang, W.N. Lipscomb, P.D. van Poelje, Structure-guided design of AMP mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity, J Am Chem Soc, 129 (2007) 15480-15490.
[48] C. Moreau, T. Kirchberger, J.M. Swarbrick, S.J. Bartlett, R. Fliegert, T. Yorgan, A. Bauche, A. Harneit, A.H. Guse, B.V. Potter, Structure-activity relationship of adenosine 5'-diphosphoribose at the transient receptor potential melastatin 2 (TRPM2) channel: rational design of antagonists, J Med Chem, 56 (2013) 10079-10102.
[49] B. Du, C.M. Chan, P.Y. Lee, L.H. Cheung, X. Xu, Z. Lin, W.Y. Yu, 2,2-difluorovinyl benzoates for diverse synthesis of gem-difluoroenol ethers by Ni-catalyzed cross-coupling reactions, Nat Commun, 12 (2021) 412.
[50] M.S. Malik, S.A. Ahmed, Althagafi, II, M.A. Ansari, A. Kamal, Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents, RSC Med Chem, 11 (2020) 327-348.
[51] P. Ertl, Craig plot 2.0: an interactive navigation in the substituent bioisosteric space, J Cheminform, 12 (2020) 8.
[52] Y. Zhang, A. Borrel, L. Ghemtio, L. Regad, G. Boije Af Gennäs, A.C. Camproux, J. Yli-Kauhaluoma, H. Xhaard, Structural Isosteres of Phosphate Groups in the Protein Data Bank, J Chem Inf Model, 57 (2017) 499-516.
[53] T.S. Elliott, A. Slowey, Y. Ye, S.J. Conway, The use of phosphate bioisosteres in medicinal chemistry and chemical biology, MedChemComm, 3 (2012) 735-751.
[54] J. Shan, C. Ji, MolOpt: A Web Server for Drug Design using Bioisosteric Transformation, Curr Comput Aided Drug Des, 16 (2020) 460-466.
[55] A. Borrel, A.C. Camproux, H. Xhaard, Characterization of Ionizable Groups' Environments in Proteins and Protein-Ligand Complexes through a Statistical Analysis of the Protein Data Bank, ACS Omega, 2 (2017) 7359-7374.
[56] Y. Xu, S. Wang, Q. Hu, S. Gao, X. Ma, W. Zhang, Y. Shen, F. Chen, L. Lai, J. Pei, CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction, Nucleic Acids Research, 46 (2018) W374-W379.
[57] N.G. Johansson, A. Turku, K. Vidilaseris, L. Dreano, A. Khattab, D. Ayuso Pérez, A. Wilkinson, Y. Zhang, M. Tamminen, E. Grazhdankin, A. Kiriazis, C.W.G. Fishwick, S. Meri, J. Yli-Kauhaluoma, A. Goldman, G. Boije Af Gennäs, H. Xhaard, Discovery of Membrane-Bound Pyrophosphatase Inhibitors Derived from an Isoxazole Fragment, ACS Med Chem Lett, 11 (2020) 605-610.
[58] W. L. & DeLano, PyMOL, in, Schrödinger, 2020.
[59] R.A. Laskowski, M.B. Swindells, LigPlot+: multiple ligand-protein interaction diagrams for drug discovery, J Chem Inf Model, 51 (2011) 2778-2786.
[60] C. De Monte, S. Carradori, B. Bizzarri, A. Bolasco, F. Caprara, A. Mollica, D. Rivanera, E. Mari, A. Zicari, A. Akdemir, D. Secci, Anti-Candida activity and cytotoxicity of a large library of new N-substituted-1,3-thiazolidin-4-one derivatives, Eur J Med Chem, 107 (2016) 82-96.
[61] S. Couty, I.M. Westwood, A. Kalusa, C. Cano, J. Travers, K. Boxall, C.L. Chow, S. Burns, J. Schmitt, L. Pickard, C. Barillari, P.C. McAndrew, P.A. Clarke, S. Linardopoulos, R.J. Griffin, G.W. Aherne, F.I. Raynaud, P. Workman, K. Jones, R.L. van Montfort, The discovery of potent ribosomal S6 kinase inhibitors by high-throughput screening and structure-guided drug design, Oncotarget, 4 (2013) 1647-1661.
[62] M.J. Bamford, M.J. Alberti, N. Bailey, S. Davies, D.K. Dean, A. Gaiba, S. Garland, J.D. Harling, D.K. Jung, T.A. Panchal, C.A. Parr, J.G. Steadman, A.K. Takle, J.T. Townsend, D.M. Wilson, J. Witherington, (1H-imidazo[4,5-c]pyridin-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: a novel class of potent MSK-1-inhibitors, Bioorg Med Chem Lett, 15 (2005) 3402-3406.
[63] U. Bandarage, B. Hare, J. Parsons, L. Pham, C. Marhefka, G. Bemis, Q. Tang, C.S. Moody, S. Rodems, S. Shah, C. Adams, J. Bravo, E. Charonnet, V. Savic, J.H. Come, J. Green, 4-(Benzimidazol-2-yl)-1,2,5-oxadiazol-3-ylamine derivatives: potent and selective p70S6 kinase inhibitors, Bioorg Med Chem Lett, 19 (2009) 5191-5194.
[64] B. Apsel, J.A. Blair, B. Gonzalez, T.M. Nazif, M.E. Feldman, B. Aizenstein, R. Hoffman, R.L. Williams, K.M. Shokat, Z.A. Knight, Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases, Nat Chem Biol, 4 (2008) 691-699.
[65] H. Cheng, C. Li, S. Bailey, S.M. Baxi, L. Goulet, L. Guo, J. Hoffman, Y. Jiang, T.O. Johnson, T.W. Johnson, D.R. Knighton, J. Li, K.K. Liu, Z. Liu, M.A. Marx, M. Walls, P.A. Wells, M.J. Yin, J. Zhu, M. Zientek, Discovery of the Highly Potent PI3K/mTOR Dual Inhibitor PF-04979064 through Structure-Based Drug Design, ACS Med Chem Lett, 4 (2013) 91-97.
[66] C.E. Arris, F.T. Boyle, A.H. Calvert, N.J. Curtin, J.A. Endicott, E.F. Garman, A.E. Gibson, B.T. Golding, S. Grant, R.J. Griffin, P. Jewsbury, L.N. Johnson, A.M. Lawrie, D.R. Newell, M.E. Noble, E.A. Sausville, R. Schultz, W. Yu, Identification of novel purine and pyrimidine cyclin-dependent kinase inhibitors with distinct molecular interactions and tumor cell growth inhibition profiles, J Med Chem, 43 (2000) 2797-2804.
[67] A. Pflug, S. Gaudon, P. Resa-Infante, M. Lethier, S. Reich, W.M. Schulze, S. Cusack, Capped RNA primer binding to influenza polymerase and implications for the mechanism of cap-binding inhibitors, Nucleic Acids Research, 46 (2017) 956-971.
[68] D. Dalgarno, T. Stehle, S. Narula, P. Schelling, M.R. van Schravendijk, S. Adams, L. Andrade, J. Keats, M. Ram, L. Jin, T. Grossman, I. MacNeil, C. Metcalf, 3rd, W. Shakespeare, Y. Wang, T. Keenan, R. Sundaramoorthi, R. Bohacek, M. Weigele, T. Sawyer, Structural basis of Src tyrosine kinase inhibition with a new class of potent and selective trisubstituted purine-based compounds, Chem Biol Drug Des, 67 (2006) 46-57.
[69] M.-S. Song, G. Kumar, W.R. Shadrick, W. Zhou, T. Jeevan, Z. Li, P.J. Slavish, T.P. Fabrizio, S.-W. Yoon, T.R. Webb, R.J. Webby, S.W. White, Identification and characterization of influenza variants resistant to a viral endonuclease inhibitor, Proceedings of the National Academy of Sciences, 113 (2016) 3669.
[70] S. Omoto, V. Speranzini, T. Hashimoto, T. Noshi, H. Yamaguchi, M. Kawai, K. Kawaguchi, T. Uehara, T. Shishido, A. Naito, S. Cusack, Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil, Sci Rep, 8 (2018) 9633.
[71] J.C. Jones, G. Kumar, S. Barman, I. Najera, S.W. White, R.J. Webby, E.A. Govorkova, Identification of the I38T PA Substitution as a Resistance Marker for Next-Generation Influenza Virus Endonuclease Inhibitors, mBio, 9 (2018).
[72] H. Wang, X. Luo, M. Ye, J. Hou, H. Robinson, H. Ke, Insight into Binding of Phosphodiesterase-9A Selective Inhibitors by Crystal Structures and Mutagenesis, Journal of Medicinal Chemistry, 53 (2010) 1726-1731.
[73] S. Liu, M.N. Mansour, K.S. Dillman, J.R. Perez, D.E. Danley, P.A. Aeed, S.P. Simons, P.K. LeMotte, F.S. Menniti, Structural basis for the catalytic mechanism of human phosphodiesterase 9, Proceedings of the National Academy of Sciences, 105 (2008) 13309-13314.
[74] L.J. Parker, S. Taruya, K. Tsuganezawa, N. Ogawa, J. Mikuni, K. Honda, Y. Tomabechi, N. Handa, M. Shirouzu, S. Yokoyama, A. Tanaka, Kinase crystal identification and ATP-competitive inhibitor screening using the fluorescent ligand SKF86002, Acta Crystallogr D Biol Crystallogr, 70 (2014) 392-404.
[75] S. Holder, M. Zemskova, C. Zhang, M. Tabrizizad, R. Bremer, J.W. Neidigh, M.B. Lilly, Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase, Mol Cancer Ther, 6 (2007) 163-172.
[76] A. Kumar, V. Mandiyan, Y. Suzuki, C. Zhang, J. Rice, J. Tsai, D.R. Artis, P. Ibrahim, R. Bremer, Crystal structures of proto-oncogene kinase Pim1: a target of aberrant somatic hypermutations in diffuse large cell lymphoma, J Mol Biol, 348 (2005) 183-193.
[77] S. Holder, M. Zemskova, C. Zhang, M. Tabrizizad, R. Bremer, J.W. Neidigh, M.B. Lilly, Characterization of a potent and selective small-molecule inhibitor of the PIM1 kinase, Mol. Cancer Ther., 6 (2007) 163-172.
[78] G.L. Card, B.P. England, Y. Suzuki, D. Fong, B. Powell, B. Lee, C. Luu, M. Tabrizizad, S. Gillette, P.N. Ibrahim, D.R. Artis, G. Bollag, M.V. Milburn, S.H. Kim, J. Schlessinger, K.Y. Zhang, Structural basis for the activity of drugs that inhibit phosphodiesterases, Structure, 12 (2004) 2233-2247.
[79] G.L. Card, B.P. England, Y. Suzuki, D. Fong, B. Powell, B. Lee, C. Luu, M. Tabrizizad, S. Gillette, P.N. Ibrahim, D.R. Artis, G. Bollag, M.V. Milburn, S.-H. Kim, J. Schlessinger, K.Y.J. Zhang, Structural Basis for the Activity of Drugs that Inhibit Phosphodiesterases, Structure, 12 (2004) 2233-2247.
[80] A.C. Good, J. Liu, B. Hirth, G. Asmussen, Y. Xiang, H.P. Biemann, K.A. Bishop, T. Fremgen, M. Fitzgerald, T. Gladysheva, A. Jain, K. Jancsics, M. Metz, A. Papoulis, R. Skerlj, J.D. Stepp, R.R. Wei, Implications of promiscuous Pim-1 kinase fragment inhibitor hydrophobic interactions for fragment-based drug design, J Med Chem, 55 (2012) 2641-2648.
[81] X. Wang, S. Magnuson, R. Pastor, E. Fan, H. Hu, V. Tsui, W. Deng, J. Murray, M. Steffek, H. Wallweber, J. Moffat, J. Drummond, G. Chan, E. Harstad, A.J. Ebens, Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-Pim inhibitors by structure- and property-based drug design, Bioorg Med Chem Lett, 23 (2013) 3149-3153.
[82] S.D. Knight, N.D. Adams, J.L. Burgess, A.M. Chaudhari, M.G. Darcy, C.A. Donatelli, J.I. Luengo, K.A. Newlander, C.A. Parrish, L.H. Ridgers, M.A. Sarpong, S.J. Schmidt, G.S. Van Aller, J.D. Carson, M.A. Diamond, P.A. Elkins, C.M. Gardiner, E. Garver, S.A. Gilbert, R.R. Gontarek, J.R. Jackson, K.L. Kershner, L. Luo, K. Raha, C.S. Sherk, C.M. Sung, D. Sutton, P.J. Tummino, R.J. Wegrzyn, K.R. Auger, D. Dhanak, Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin, ACS Med Chem Lett, 1 (2010) 39-43.
[83] A.C. Pierce, M. Jacobs, C. Stuver-Moody, Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase, J Med Chem, 51 (2008) 1972-1975.
[84] M.S. Alphey, L. Pirrie, L.S. Torrie, W.A. Boulkeroua, M. Gardiner, A. Sarkar, M. Maringer, W. Oehlmann, R. Brenk, M.S. Scherman, M. McNeil, M. Rejzek, R.A. Field, M. Singh, D. Gray, N.J. Westwood, J.H. Naismith, Allosteric Competitive Inhibitors of the Glucose-1-phosphate Thymidylyltransferase (RmlA) from Pseudomonas aeruginosa, ACS Chemical Biology, 8 (2013) 387-396.
[85] K. Huber, L. Brault, O. Fedorov, C. Gasser, P. Filippakopoulos, A.N. Bullock, D. Fabbro, J. Trappe, J. Schwaller, S. Knapp, F. Bracher, 7,8-dichloro-1-oxo-β-carbolines as a versatile scaffold for the development of potent and selective kinase inhibitors with unusual binding modes, J Med Chem, 55 (2012) 403-413.
[86] L. Lama, C. Adura, W. Xie, D. Tomita, T. Kamei, V. Kuryavyi, T. Gogakos, J.I. Steinberg, M. Miller, L. Ramos-Espiritu, Y. Asano, S. Hashizume, J. Aida, T. Imaeda, R. Okamoto, A.J. Jennings, M. Michino, T. Kuroita, A. Stamford, P. Gao, P. Meinke, J.F. Glickman, D.J. Patel, T. Tuschl, Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression, Nature Communications, 10 (2019) 2261.
[87] P.G. Wyatt, A.J. Woodhead, V. Berdini, J.A. Boulstridge, M.G. Carr, D.M. Cross, D.J. Davis, L.A. Devine, T.R. Early, R.E. Feltell, E.J. Lewis, R.L. McMenamin, E.F. Navarro, M.A. O'Brien, M. O'Reilly, M. Reule, G. Saxty, L.C. Seavers, D.M. Smith, M.S. Squires, G. Trewartha, M.T. Walker, A.J. Woolford, Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design, J Med Chem, 51 (2008) 4986-4999.
[88] R.A. Engh, A. Girod, V. Kinzel, R. Huber, D. Bossemeyer, Crystal structures of catalytic subunit of cAMP-dependent protein kinase in complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8, and H89. Structural implications for selectivity, J Biol Chem, 271 (1996) 26157-26164.