Background
Triple negative breast cancer (TNBC) is an aggressive breast cancer for which there is currently no targeted therapy. Tumor-infiltrating B-cells (TIB) have been observed in tumor tissues of TNBC patients, but their functional role is unclear. IgG4 is one of four antibody subclasses of IgG expressed and secreted by B cells. Unlike other IgG isotypes, IgG4 has an immunosuppressive function and is induced by Th2-type cytokines. In cancers such as melanoma, IgG4 has been linked with advanced disease and poor patient survival. Therefore, we sought to determine the role of IgG4 in TNBC.
Methods
We performed co-culture assays to examine expression of Th2 cytokines by TNBC cells with and without the presence of B cells. We also performed in vitro class switching experiments with peripheral B cells with and without co-culture with TNBC cells in the presence or absence of an IL-10 blocking antibody. We examined expression of CD20 + TIB, IgG4 and Th2 cytokines by immunohistochemistry in 152 TNBC samples. Statistical analysis was done using Log-Rank and Cox-proportional hazards tests.
Results
Our findings indicate that B cells interact with TNBC to drive chronic inflammatory responses through increased expression of inflammatory cytokines including the TH2 cytokines IL-4 and IL-10. In vitro class switching studies show that interactions between TNBC cell lines and B cells drive isotype switching to the IgG4 isotype in an IL-10 dependent manner. In patient tissues, expression of IgG4 correlates with CD20 and tumor expression of IL-10. Both IgG4 and tumor IL-10 are associated to shorter recurrence free survival (RFS) and overall survival (OS) in TNBC. In a multi-variant analysis, IL-10 was associated with poor outcomes indicating that tumor IL-10 may drive immune escape.
Conclusions
These findings indicate that interactions between TIB and TNBC results in activation of chronic inflammatory signals that suppress antibody driven immune responses