1.M. I. Groschel, F. Sayes, R. Simeone, L. Majlessi, R. Brosch, ESX secretion systems: mycobacterial evolution to counter host immunity. Nat Rev Microbiol 14, 677–691 (2016).
2.M. L. Burts, W. A. Williams, K. DeBord, D. M. Missiakas, EsxA and EsxB are secreted by an ESAT–6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 102, 1169–1174 (2005).
3.H. Kneuper et al., Heterogeneity in ess transcriptional organization and variable contribution of the Ess/Type VII protein secretion system to virulence across closely related Staphylocccus aureus strains. Mol Microbiol 93, 928–943 (2014).
4.Y. Wang et al., Role of the ESAT–6 secretion system in virulence of the emerging community-associated Staphylococcus aureus lineage ST398. Sci Rep 6, 25163 (2016).
5.Z. Cao, M. G. Casabona, H. Kneuper, J. D. Chalmers, T. Palmer, The type VII secretion system of Staphylococcus aureus secretes a nuclease toxin that targets competitor bacteria. Nat Microbiol 2, 16183 (2016).
6.F. R. Ulhuq et al., A membrane-depolarizing toxin substrate of the Staphylococcus aureus type VII secretion system mediates intraspecies competition. Proc Natl Acad Sci U S A 10.1073/pnas.2006110117 (2020).
7.T. A. Klein, M. Pazos, M. G. Surette, W. Vollmer, J. C. Whitney, Molecular Basis for Immunity Protein Recognition of a Type VII Secretion System Exported Antibacterial Toxin. J Mol Biol 430, 4344–4358 (2018).
8.J. C. Whitney et al., A broadly distributed toxin family mediates contact-dependent antagonism between gram-positive bacteria. Elife 6 (2017).
9.M. Tassinari et al., Central role and structure of the membrane pseudokinase YukC in the antibacterial Bacillus subtilis Type VIIb Secretion System. bioRxiv 10.1101/2020.05.09.085852 (2020).
10.R. M. Klevens et al., Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298, 1763–1771 (2007).
11.S. Y. Tong, J. S. Davis, E. Eichenberger, T. L. Holland, V. G. Fowler, Jr., Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28, 603–661 (2015).
12.H. F. Chambers, F. R. Deleo, Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol 7, 629–641 (2009).
13.A. S. Lee et al., Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers 4, 18033 (2018).
14.K. M. Daly et al., Production of the Bsa lantibiotic by community-acquired Staphylococcus aureus strains. J Bacteriol 192, 1131–1142 (2010).
15.J. L. Willett, Z. C. Ruhe, C. W. Goulding, D. A. Low, C. S. Hayes, Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins. J Mol Biol 427, 3754–3765 (2015).
16.T. A. Klein, S. Ahmad, J. C. Whitney, Contact-Dependent Interbacterial Antagonism Mediated by Protein Secretion Machines. Trends Microbiol 28, 387–400 (2020).
17.S. Koskiniemi et al., Rhs proteins from diverse bacteria mediate intercellular competition. Proc Natl Acad Sci U S A 110, 7032–7037 (2013).
18.M. Anderson et al., EssE Promotes Staphylococcus aureus ESS-Dependent Protein Secretion To Modify Host Immune Responses during Infection. J Bacteriol 199 (2017).
19.N. Mietrach, D. Damian-Aparicio, B. Mielich-Suss, D. Lopez, S. Geibel, Substrate Interaction with the EssC Coupling Protein of the Type VIIb Secretion System. J Bacteriol 202 (2020).
20.F. Jager, H. Kneuper, T. Palmer, EssC is a specificity determinant for Staphylococcus aureus type VII secretion. Microbiology 164, 816–820 (2018).
21.N. Mietrach, A. Schlosser, S. Geibel, An extracellular domain of the EsaA membrane component of the type VIIb secretion system: expression, purification and crystallization. Acta Crystallogr F Struct Biol Commun 75, 725–730 (2019).
22.A. Dreisbach et al., Profiling the surfacome of Staphylococcus aureus. Proteomics 10, 3082–3096 (2010).
23.M. Zoltner et al., The architecture of EssB, an integral membrane component of the type VII secretion system. Structure 21, 595–603 (2013).
24.R. J. Ohr, M. Anderson, M. Shi, O. Schneewind, D. Missiakas, EssD, a Nuclease Effector of the Staphylococcus aureus ESS Pathway. J Bacteriol 199 (2017).
25.C. Sao-Jose, C. Baptista, M. A. Santos, Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J Bacteriol 186, 8337–8346 (2004).
26.F. Jager, M. Zoltner, H. Kneuper, W. N. Hunter, T. Palmer, Membrane interactions and self-association of components of the Ess/Type VII secretion system of Staphylococcus aureus. FEBS Lett 590, 349–357 (2016).
27.X. Zhou, L. Cegelski, Nutrient-dependent structural changes in S. aureus peptidoglycan revealed by solid-state NMR spectroscopy. Biochemistry 51, 8143–8153 (2012).
28.W. Yuan et al., Cell wall thickening is associated with adaptive resistance to amikacin in methicillin-resistant Staphylococcus aureus clinical isolates. J Antimicrob Chemother 68, 1089–1096 (2013).
29.K. T. Baek et al., beta-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease. Antimicrob Agents Chemother 58, 4593–4603 (2014).
30.L. Holm, DALI and the persistence of protein shape. Protein Sci 29, 128–140 (2020).
31.R. P. Novick, Genetic systems in staphylococci. Methods Enzymol 204, 587–636 (1991).
32.B. Mielich-Suss et al., Flotillin scaffold activity contributes to type VII secretion system assembly in Staphylococcus aureus. PLoS Pathog 13, e1006728 (2017).
33.G. A. O’Toole, R. Kolter, Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28, 449–461 (1998).
34.E. J. Cabre et al., Bacterial division proteins FtsZ and ZipA induce vesicle shrinkage and cell membrane invagination. J Biol Chem 288, 26625–26634 (2013).
35.M. Krupka et al., Role of the FtsA C terminus as a switch for polymerization and membrane association. mBio 5, e02221 (2014).
36.M. Krupka et al., Escherichia coli FtsA forms lipid-bound minirings that antagonize lateral interactions between FtsZ protofilaments. Nat Commun 8, 15957 (2017).
37.P. Szwedziak, Q. Wang, S. M. Freund, J. Lowe, FtsA forms actin-like protofilaments. EMBO J 31, 2249–2260 (2012).
38.Y. G. Chan, M. B. Frankel, D. Missiakas, O. Schneewind, SagB Glucosaminidase Is a Determinant of Staphylococcus aureus Glycan Chain Length, Antibiotic Susceptibility, and Protein Secretion. J Bacteriol 198, 1123–1136 (2016).
39.M. Bobrovskyy, S. E. Willing, O. Schneewind, D. Missiakas, EssH Peptidoglycan Hydrolase Enables Staphylococcus aureus Type VII Secretion across the Bacterial Cell Wall Envelope. J Bacteriol 200 (2018).
40.A. Yepes, G. Koch, A. Waldvogel, J. C. Garcia-Betancur, D. Lopez, Reconstruction of mreB expression in Staphylococcus aureus via a collection of new integrative plasmids. Appl Environ Microbiol 80, 3868–3878 (2014).
41.W. Kabsch, Xds. Acta Crystallogr D Biol Crystallogr 66, 125–132 (2010).
42.G. M. Sheldrick, A short history of SHELX. Acta Crystallogr A 64, 112–122 (2008).
43.P. V. Afonine et al., Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr D Biol Crystallogr 68, 352–367 (2012).
44.P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486–501 (2010).
45.M. D. Winn et al., Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67, 235–242 (2011).
46.K. Cowtan, Recent developments in classical density modification. Acta Crystallogr D Biol Crystallogr 66, 470–478 (2010).
47.A. J. McCoy, L. C. Storoni, R. J. Read, Simple algorithm for a maximum-likelihood SAD function. Acta Crystallogr D Biol Crystallogr 60, 1220–1228 (2004).
48.G. N. Murshudov et al., REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67, 355–367 (2011).
49.N. S. Pannu, G. N. Murshudov, E. J. Dodson, R. J. Read, Incorporation of prior phase information strengthens maximum-likelihood structure refinement. Acta Crystallogr D Biol Crystallogr 54, 1285–1294 (1998).
50.E. J. Cabre et al., The Nucleoid Occlusion SlmA Protein Accelerates the Disassembly of the FtsZ Protein Polymers without Affecting Their GTPase Activity. PLoS One 10, e0126434 (2015).
51.P. V. Afonine et al., FEM: feature-enhanced map. Acta Crystallogr D Biol Crystallogr 71, 646–666 (2015).