Akila, R. M. (2014). Fermentative production of fungal Chitosan, a versatile biopolymer (perspectives and its applications). Pelagia Research Library Advances in Applied Science Research, 5(4), 157–170. www.pelagiaresearchlibrary.com
Almeida, F., Nosanchuk, J. D., & Niño-Vega, G. A. (2020). Editorial: The Fungal Cell Wall. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01682
Andrade, L. M., Rocha, K. A. D., de Sá, F. A. P., Marreto, R. N., Lima, E. M., Gratieri, T., & Taveira, S. F. (2016). Voriconazole-Loaded Nanostructured Lipid Carriers for Ocular Drug Delivery. Cornea, 35(6). https://doi.org/10.1097/ICO.0000000000000825
Blair, D. E., Hekmat, O., Schüttelkopf, A. W., Shrestha, B., Tokuyasu, K., Withers, S. G., & van Aalten, D. M. F. (2006). Structure and Mechanism of Chitin Deacetylase from the Fungal Pathogen Colletotrichum lindemuthianum †, ‡. Biochemistry, 45(31). https://doi.org/10.1021/bi0606694
Chen, Y., Wang, M., & Fang, L. (2013). Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems. Drug Delivery, 20(5). https://doi.org/10.3109/10717544.2013.801533
Cheung, R. C. F., Ng, T. B., Wong, J. H., & Chan, W. Y. (2015). Chitosan: An update on potential biomedical and pharmaceutical applications. In Marine Drugs (Vol. 13, Issue 8, pp. 5156–5186). MDPI AG. https://doi.org/10.3390/md13085156
Dellière, S., Rivero-Menendez, O., Gautier, C., Garcia-Hermoso, D., Alastruey-Izquierdo, A., & Alanio, A. (2020). Emerging mould infections: Get prepared to meet unexpected fungi in your patient. Medical Mycology, 58(2), 156–162. https://doi.org/10.1093/mmy/myz039
George, T. S., Samy, K., Guru, S., Vasanthi, S., & Kannan, K. P. (2011). EXTRACTION, PURIFICATION AND CHARACTERIZATION OF CHITOSAN FROM ENDOPHYTIC FUNGI ISOLATED FROM MEDICINAL PLANTS. In World Journal of Science and Technology | www.worldjournalofscience.com | (Vol. 1, Issue 4). www.worldjournalofscience.com
Gintjee, T. J., Donnelley, M. A., & Thompson, G. R. (2020a). Aspiring Antifungals: Review of Current Antifungal Pipeline Developments. Journal of Fungi, 6(1), 28. https://doi.org/10.3390/jof6010028
Gintjee, T. J., Donnelley, M. A., & Thompson, G. R. (2020b). Aspiring Antifungals: Review of Current Antifungal Pipeline Developments. Journal of Fungi, 6(1). https://doi.org/10.3390/jof6010028
Groll, A. H., & Gastine, S. (2020). Therapeutic drug monitoring for antifungal triazoles: pharmacologic background and current status. In Handbook of Analytical Separations (Vol. 7, pp. 185–224). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64066-6.00009-5
Jhaveri, J., Raichura, Z., Khan, T., Momin, M., Omri, A., Stancanelli, R., Tommasini, S., Anna Ventura, C., Crupi, V., & Majolino, D. (2021). molecules Chitosan Nanoparticles-Insight into Properties, Functionalization and Applications in Drug Delivery and Theranostics. https://doi.org/10.3390/molecules
Khare, A., Singh, I., Pawar, P., & Grover, K. (2016). Design and Evaluation of Voriconazole Loaded Solid Lipid Nanoparticles for Ophthalmic Application. Journal of Drug Delivery, 2016. https://doi.org/10.1155/2016/6590361
Kramer KJ, M. S. (n.d.). Comprehensive Molecular Insect Science (eds. L. I. Gilbert, K. Iatrou, and S. S. Gill) Elsevier, Vol. 4, 111-144.
Kumar, R., & Sinha, V. R. (2017). Lipid Nanocarrier: An Efficient Approach Towards Ocular Delivery of Hydrophilic Drug (Valacyclovir). AAPS PharmSciTech, 18(3). https://doi.org/10.1208/s12249-016-0575-2
M. Prabaharan. (2012). Sources of Chitosan. In Chitosan and Its Derivatives as Promising Drug Delivery Carriers. ASME Press. https://doi.org/10.1115/1.860052_ch2
Masarudin, M. J., Cutts, S. M., Evison, B. J., Phillips, D. R., & Pigram, P. J. (2015). Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: Application to the passive encapsulation of [14C]-doxorubicin. Nanotechnology, Science and Applications, 8, 67–80. https://doi.org/10.2147/NSA.S91785
Merzendorfer, H. (2011). The cellular basis of chitin synthesis in fungi and insects: Common principles and differences. European Journal of Cell Biology, 90(9). https://doi.org/10.1016/j.ejcb.2011.04.014
Naghdi, M., Zamani, A., & Karimi, K. (2014). A sulfuric-lactic acid process for efficient purification of fungal chitosan with intact molecular weight. International Journal of Biological Macromolecules, 63, 158–162. https://doi.org/10.1016/j.ijbiomac.2013.10.042
Paul, P., Sengupta, S., Mukherjee, B., Shaw, T. K., Gaonkar, R. H., & Debnath, M. C. (2018). Chitosan-coated nanoparticles enhanced lung pharmacokinetic profile of voriconazole upon pulmonary delivery in mice. Nanomedicine, 13(5). https://doi.org/10.2217/nnm-2017-0291
Rizeq, B. R., Younes, N. N., Rasool, K., & Nasrallah, G. K. (2019). Synthesis, bioapplications, and toxicity evaluation of chitosan-based nanoparticles. In International Journal of Molecular Sciences (Vol. 20, Issue 22). MDPI AG. https://doi.org/10.3390/ijms20225776
Ruiz, G. A. M., & Corrales, H. F. Z. (2017). Chitosan, Chitosan Derivatives and their Biomedical Applications. In Biological Activities and Application of Marine Polysaccharides. InTech. https://doi.org/10.5772/66527
Saharan, V., Mehrotra, A., Khatik, R., Rawal, P., Sharma, S. S., & Pal, A. (2013). Synthesis of chitosan-based nanoparticles and their in vitro evaluation against phytopathogenic fungi. International Journal of Biological Macromolecules, 62, 677–683. https://doi.org/10.1016/j.ijbiomac.2013.10.012
Scott, L. J., & Simpson, D. (2007). Voriconazole. Drugs, 67(2). https://doi.org/10.2165/00003495-200767020-00009
Sebastian, J., Rouissi, T., Brar, S. K., Hegde, K., & Verma, M. (2019). Microwave-assisted extraction of chitosan from Rhizopus oryzae NRRL 1526 biomass. Carbohydrate Polymers, 219, 431–440. https://doi.org/10.1016/j.carbpol.2019.05.047
Soliman, G. M. (2017). Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. In International Journal of Pharmaceutics (Vol. 523, Issue 1, pp. 15–32). Elsevier B.V. https://doi.org/10.1016/j.ijpharm.2017.03.019
Song et al 2014. (n.d.). NLCs.
Valencia, M. S., Franco da Silva Júnior, M., Xavier Júnior, F. H., de Oliveira Veras, B., Fernanda de Oliveira Borba, E., Gonçalves da Silva, T., Xavier, V. L., Pessoa de Souza, M., & Carneiro-da-Cunha, M. das G. (2021). Bioactivity and cytotoxicity of quercetin-loaded, lecithin-chitosan nanoparticles. Biocatalysis and Agricultural Biotechnology, 31. https://doi.org/10.1016/j.bcab.2020.101879
Vernon Ahmadjian. (n.d.). Ahmadjian, Vernon , Alexopoulos, Constantine John and Moore, David. “Fungus”. Encyclopedia Britannica, 27 Feb. 2020, https://www.britannica.com/science/fungus. Accessed 24 April 2021.
Voriconazole. (2016). In Meyler’s Side Effects of Drugs (pp. 504–521). Elsevier. https://doi.org/10.1016/B978-0-444-53717-1.01643-7
Webster, J., Weber, R., Webster, J., & Weber, R. (2012). Introduction. In Introduction to Fungi (pp. 1–39). Cambridge University Press. https://doi.org/10.1017/cbo9780511809026.004
Zhang, J., Wang, Y., Li, J., Zhao, W., Yang, Z., & Feng, Y. (2020). α-Santalol functionalized chitosan nanoparticles as efficient inhibitors of polo-like kinase in triple negative breast cancer. RSC Advances, 10(9), 5487–5501. https://doi.org/10.1039/c9ra09084c
Zhao, Y., Park, R.-D., & Muzzarelli, R. A. A. (2010). Chitin Deacetylases: Properties and Applications. Marine Drugs, 8(1). https://doi.org/10.3390/md8010024