1. Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 2008;322(5909):1857-61.
2. Ploetz E, Laimgruber S, Berner S, Zinth W, Gilch P. Femtosecond stimulated Raman microscopy. Applied Physics B. 2007;87(3):389-93.
3. Shi L, Zheng C, Shen Y, Chen Z, Silveira ES, Zhang L, et al. Optical imaging of metabolic dynamics in animals. Nature communications. 2018;9(1):1-17.
4. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313(5793):1642-5.
5. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Optics letters. 1994;19(11):780-2.
6. Hess ST, Girirajan TP, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical journal. 2006;91(11):4258-72.
7. Weber M, Leutenegger M, Stoldt S, Jakobs S, Mihaila TS, Butkevich AN, et al. MINSTED fluorescence localization and nanoscopy. Nature photonics. 2021;15(5):361-6.
8. Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, Ries J, et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nature methods. 2020;17(2):217-24.
9. Ghosh A, Sharma A, Chizhik AI, Isbaner S, Ruhlandt D, Tsukanov R, et al. Graphene-based metal-induced energy transfer for sub-nanometre optical localization. Nature Photonics. 2019;13(12):860-5.
10. Ao J, Fang X, Miao X, Ling J, Kang H, Park S, et al. Switchable stimulated Raman scattering microscopy with photochromic vibrational probes. Nature communications. 2021;12(1):1-8.
11. Qian C, Miao K, Lin L-E, Chen X, Du J, Wei L. Super-resolution label-free volumetric vibrational imaging. Nature Communications. 2021;12(1):1-10.
12. Xiong H, Qian N, Miao Y, Zhao Z, Chen C, Min W. Super-resolution vibrational microscopy by stimulated Raman excited fluorescence. Light: Science & Applications. 2021;10(1):1-10.
13. Gong L, Zheng W, Ma Y, Huang Z. Saturated Stimulated-Raman-Scattering Microscopy for Far-Field Superresolution Vibrational Imaging. Physical Review Applied. 2019;11(3):034041.
14. Gong L, Wang H. Breaking the diffraction limit by saturation in stimulated-Raman-scattering microscopy: A theoretical study. Physical Review A. 2014;90(1):013818.
15. Gong L, Wang H. Suppression of stimulated Raman scattering by an electromagnetically-induced-transparency--like scheme and its application for super-resolution microscopy. Physical Review A. 2015;92(2):023828.
16. Silva WR, Graefe CT, Frontiera RR. Toward Label-Free Super-Resolution Microscopy. ACS Photonics. 2016;3(1):79-86.
17. Shi L, Klimas A, Gallagher B, Cheng Z, Fu F, Wijesekara P, et al. Super-resolution vibrational imaging using expansion stimulated Raman scattering microscopy. Advanced Science. 2022;9(13):2200315.
18. Tzang O, Pevzner A, Marvel RE, Haglund RF, Cheshnovsky O. Super-Resolution in Label-Free Photomodulated Reflectivity. Nano Letters. 2015;15(2):1362-7.
19. Guilbert J, Negash A, Labouesse S, Gigan S, Sentenac A, de Aguiar HB. Label-free super-resolution chemical imaging of biomedical specimens. bioRxiv. 2021.
20. Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, et al. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods. 2017;115:28-41.
21. Zhu L, Zhang W, Elnatan D, Huang B. Faster STORM using compressed sensing. Nature methods. 2012;9(7):721-3.
22. Min J, Vonesch C, Kirshner H, Carlini L, Olivier N, Holden S, et al. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Scientific reports. 2014;4(1):1-9.
23. Hugelier S, De Rooi JJ, Bernex R, Duwé S, Devos O, Sliwa M, et al. Sparse deconvolution of high-density super-resolution images. Scientific reports. 2016;6(1):1-11.
24. Martínez S, Toscani M, Martinez OE. Superresolution method for a single wide‐field image deconvolution by superposition of point sources. Journal of microscopy. 2019;275(1):51-65.
25. Wallace W, Schaefer LH, Swedlow JR. A workingperson’s guide to deconvolution in light microscopy. Biotechniques. 2001;31(5):1076-97.
26. Holden SJ, Uphoff S, Kapanidis AN. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nature methods. 2011;8(4):279-80.
27. Shi L, Rodríguez-Contreras A, Alfano RR. Gaussian beam in two-photon fluorescence imaging of rat brain microvessel. Journal of biomedical optics. 2014;19(12):126006.
28. Chaigneau E, Wright AJ, Poland SP, Girkin JM, Silver RA. Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue. Optics express. 2011;19(23):22755-74.
29. Tzarouchis D, Sihvola A. Light scattering by a dielectric sphere: perspectives on the Mie resonances. Applied Sciences. 2018;8(2):184.
30. Ji N, Milkie DE, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nature methods. 2010;7(2):141-7.
31. Zhang B, Zhu J, Si K, Gong W. Deep learning assisted zonal adaptive aberration correction. Frontiers in Physics. 2021;8:634.
32. Descloux A, Grußmayer KS, Radenovic A. Parameter-free image resolution estimation based on decorrelation analysis. Nature methods. 2019;16(9):918-24.
33. Boesze-Battaglia K, Yeagle PL. Rod outer segment disc membranes are capable of fusion. Investigative ophthalmology & visual science. 1992;33(3):484-93.
34. Abramczyk H, Surmacki J, Kopeć M, Olejnik AK, Lubecka-Pietruszewska K, Fabianowska-Majewska K. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst. 2015;140(7):2224-35.
35. Bagheri P, Hoang K, Fung AA, Hussain S, Shi L. Visualizing Cancer Cell Metabolic Dynamics Regulated With Aromatic Amino Acids Using DO-SRS and 2PEF Microscopy. Frontiers in Molecular Biosciences. 2021;8.
36. Fung A, Hoang K, Zha H, Chen D, Zhang W, Shi L. Imaging Sub-Cellular Methionine and Insulin Interplay in Triple Negative Breast Cancer Lipid Droplet Metabolism.. Front. Oncol. 2022;12:858017.
37. Jarc E, Petan T. Focus: Organelles: Lipid droplets and the management of cellular stress. The Yale journal of biology and medicine. 2019;92(3):435.
38. Li X, Li Y, Jiang M, Wu W, He S, Chen C, et al. Quantitative imaging of lipid synthesis and lipolysis dynamics in Caenorhabditis elegans by stimulated Raman scattering microscopy. Analytical chemistry. 2018;91(3):2279-87.
39. Lisec J, Jaeger C, Rashid R, Munir R, Zaidi N. Cancer cell lipid class homeostasis is altered under nutrient-deprivation but stable under hypoxia. BMC cancer. 2019;19(1):1-11.
40. Paar M, Jüngst C, Steiner NA, Magnes C, Sinner F, Kolb D, et al. Remodeling of lipid droplets during lipolysis and growth in adipocytes. Journal of Biological Chemistry. 2012;287(14):11164-73.
41. Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer research. 2010;70(20):8117-26.
42. Schott MB, Weller SG, Schulze RJ, Krueger EW, Drizyte-Miller K, Casey CA, et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. Journal of Cell Biology. 2019;218(10):3320-35.
43. Schug Z, Peck B, Jones D, Zhang Q, Alam I, Witney T, et al. Acetyl-coA synthetase 2 promotes acetate utilization and maintains cell growth under metabolic stress. Cancer & Metabolism. 2014;2(1):1-.
44. Wolins NE, Quaynor BK, Skinner JR, Schoenfish MJ, Tzekov A, Bickel PE. S3-12, Adipophilin, and TIP47 package lipid in adipocytes. Journal of Biological Chemistry. 2005;280(19):19146-55.
45. Li Y, Zhang W, Fung AA, Shi L. DO‐SRS imaging of diet regulated metabolic activities in Drosophila during aging processes. Aging Cell. 2022:e13586.
46. Li Y, Zhang W, Fung AA, Shi L. DO-SRS imaging of metabolic dynamics in aging Drosophila. Analyst. 2021;146(24):7510-9.
47. Li Y, Bagheri P, Chang P, Zeng A, Hao J, Fung A, et al. Direct Imaging of Lipid Metabolic Changes in Drosophila Ovary During Aging Using DO-SRS Microscopy. Frontiers in Aging. 2022;2.
48. Lu F-K, Basu S, Igras V, Hoang MP, Ji M, Fu D, et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences. 2015;112(37):11624-9.
49. Wei M, Shi L, Shen Y, Zhao Z, Guzman A, Kaufman LJ, et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences. 2019;116(14):6608-17.
50. Bae K, Xin L, Zheng W, Tang C, Ang B-T, Huang Z. Mapping the Intratumoral heterogeneity in Glioblastomas with Hyperspectral stimulated Raman scattering microscopy. Analytical Chemistry. 2021;93(4):2377-84.
51. Gong L, Lin S, Huang Z. Stimulated Raman Scattering Tomography Enables Label‐Free Volumetric Deep Tissue Imaging. Laser & Photonics Reviews. 2021;15(9):2100069.
52. Shi L, Wei M, Miao Y, Qian N, Shi L, Singer RA, et al. Highly-multiplexed volumetric mapping with Raman dye imaging and tissue clearing. Nature Biotechnology. 2021:1-10.
53. Wilfling F, Haas JT, Walther TC, Farese RV, Jr. Lipid droplet biogenesis. Curr Opin Cell Biol. 2014;29:39-45.
54. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell. 2013;24(4):384-99.
55. Back SH, Kaufman RJ. Endoplasmic reticulum stress and type 2 diabetes. Annual review of biochemistry. 2012;81:767-93.
56. Yamamoto K, Takahara K, Oyadomari S, Okada T, Sato T, Harada A, et al. Induction of liver steatosis and lipid droplet formation in ATF6α-knockout mice burdened with pharmacological endoplasmic reticulum stress. Molecular biology of the cell. 2010;21(17):2975-86.
57. Moncan M, Mnich K, Blomme A, Almanza A, Samali A, Gorman AM. Regulation of lipid metabolism by the unfolded protein response. Journal of cellular and molecular medicine. 2021;25(3):1359-70.
58. Tabet M, Urban III F. Deconvolution of tip affected atomic force microscope images and comparison to Rutherford backscattering spectrometry. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 1997;15(4):800-4.
59. Lee H, Yoo H, Moon G, Toh K-A, Mochizuki K, Fujita K, et al. Super-resolved Raman microscopy using random structured light illumination: Concept and feasibility. The Journal of Chemical Physics. 2021;155(14):144202.
60. Watanabe K, Palonpon AF, Smith NI, Chiu L-d, Kasai A, Hashimoto H, et al. Structured line illumination Raman microscopy. Nature communications. 2015;6(1):1-8.
61. Zhao W, Zhao S, Li L, Huang X, Xing S, Zhang Y, et al. Sparse deconvolution improves the resolution of live-cell super-resolution fluorescence microscopy. Nature Biotechnology. 2021:1-12.
62. Starck JL, Pantin E, Murtagh F. Deconvolution in Astronomy: A Review. Publications of the Astronomical Society of the Pacific. 2002;114(800):1051-69.
63. Lucy LB. An iterative technique for the rectification of observed distributions. The astronomical journal. 1974;79:745.
64. Zhou R, Han B, Xia C, Zhuang X. Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons. Science. 2019;365(6456):929-34.
65. Xiao S, Gritton H, Tseng H-a, Zemel D, Han X, Mertz J. High-contrast multifocus microscopy with a single camera and z-splitter prism. Optica. 2020;7(11):1477-86.
66. Stein SC, Huss A, Hähnel D, Gregor I, Enderlein J. Fourier interpolation stochastic optical fluctuation imaging. Optics express. 2015;23(12):16154-63.
67. Mandracchia B, Hua X, Guo C, Son J, Urner T, Jia S. Fast and accurate sCMOS noise correction for fluorescence microscopy. Nature communications. 2020;11(1):1-12.
68. Blu T, Luisier F. The SURE-LET approach to image denoising. IEEE Transactions on Image Processing. 2007;16(11):2778-86.
69. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014.
70. Kirshner H, Aguet F, Sage D, Unser M. 3‐D PSF fitting for fluorescence microscopy: implementation and localization application. Journal of microscopy. 2013;249(1):13-25.
71. Deng J, Yang M, Chen Y, Chen X, Liu J, Sun S, et al. FUS interacts with HSP60 to promote mitochondrial damage. PLoS genetics. 2015;11(9):e1005357.
72. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature methods. 2006;3(10):793-6.
73. Bintu B, Mateo LJ, Su J-H, Sinnott-Armstrong NA, Parker M, Kinrot S, et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science. 2018;362(6413):eaau1783.