1. Tatum, H. Jr. Maxillary and sinus implant reconstructions. Dent Clin North Am. 30, 207-229 (1986).
2. Summers, R. B. A new concept in maxillary implant surgery: the osteotome technique. Compendium. 15, 152, 154-156, 158 (1994).
3. Sohn, D. S., Lee, J. S., Ahn, M. R. & Shin, H. I. New Bone Formation in the Maxillary Sinus With/Without Bone Graft. Implant Dent 17, 321 (2008).
4. Kanayama, T., Horii, K., Senga, Y., Shibuya, Y. Crestal Approach to Sinus Floor Elevation for Atrophic Maxilla Using Platelet-Rich Fibrin as the Only Grafting Material: A 1-Year Prospective Study. Implant Dent 25, 32-38 (2016).
5. Lundgren, S., Andersson, S., Gualini, F. & Sennerby, L. Bone reformation with sinus membrane elevation: a new surgical technique for maxillary sinus floor augmentation. Clin Implant Dent Relat Res. 6,165-173 (2004).
6. Jung, Y. S. et al. Spontaneous bone formation on the maxillary sinus floor in association with an extraction socket. Int J Oral Maxillofac Surg. 36, 656-657 (2007).
7. Gruber, R., Kandler, B., Fuerst, G., Fischer, M. B. & Watzek, G. Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro. Clin Oral Implants Res 15, 575-580 (2010).
8. Berbéri, A. et al. Mesenchymal stem cells with osteogenic potential in human maxillary sinus membrane: an in vitro study. Clin Oral Investig 21, 1599-1609 (2016).
9. Yun, K. I., Kim, D. J. & Park, J. U. Osteogenic potential of adult stem cells from human maxillary sinus membrane by Simvastatin in vitro: preliminary report. J Korean Assoc Oral Maxillofac Surg 39, 150-155 (2013).
10. Guo, J. et al. Investigation of multipotent postnatal stem cells from human maxillary sinus membrane. Sci Rep 5, 11660 (2015).
11. Bou Assaf, R. et al. Evaluation of the Osteogenic Potential of Different Scaffolds Embedded with Human Stem Cells Originated from Schneiderian Membrane: An In Vitro Study. Biomed Res Int 2868673 (2019).
12. Srouji, S. et al. The innate osteogenic potential of the maxillary sinus (Schneiderian) membrane: an ectopic tissue transplant model simulating sinus lifting. Int J Oral Maxillofac Surg. 39, 793-801 (2010).
13. Guzman, J. Z. et al. Bone morphogenetic protein use in spine surgery in the United States: how have we responded to the warnings? Spine J 17, 1247-1254 (2017).
14. Wang, T., Zhang, X., & Bikle, D. D. Osteogenic Differentiation of Periosteal Cells During Fracture Healing. J Cell Physiol 232, 913-921 (2017).
15. Choukroun, J., Adda, F., Schoeffler, C. & Vervelle, A. Une opportunit?? en paro-implantologie: Le PRF. Implantodontie 42, 55-62 (2001).
16. Li, Q. et al. Platelet-rich fibrin promotes periodontal regeneration and enhances alveolar bone augmentation. Biomed Res Int 638043 (2013).
17. Nugraha, A. P. et al. Osteogenic potential of gingival stromal progenitor cells cultured in platelet rich fibrin is predicted by core-binding factor subunit-α1/Sox9 expression ratio (in vitro). F1000Res 7, 1134 (2018).
18. Duan, X., Lin, Z., Lin, X., Wang, Z. & Zhang, D. Study of platelet-rich fibrin combined with rat periodontal ligament stem cells in periodontal tissue regeneration. J Cell Mol Med 22, 1047-1055 (2018).
19. Wang, J. et al. Endoscope-Assisted Maxillary Sinus Floor Elevation with Platelet-Rich Fibrin Grafting and Simultaneous Implant Placement: A Prospective Clinical Trial. Int J Oral Maxillofac Implants 36, 137-145 (2021).
20. Cho, Y. et al. Radiologic comparative analysis between saline and platelet‐rich fibrin filling after hydraulic transcrestal sinus lifting without adjunctive bone graft: A randomized controlled trial. Clin Oral Implants Res 31,1087-1093 (2020).
21. Molemans, B. et al. Simultaneous sinus floor elevation and implant placement using leukocyte- and platelet-rich fibrin as a sole graft material. Int J Oral Maxillofac Implants 34, 1195–1201 (2019).
22. Bou Assaf, R. et al. Healing of Bone Defects in Pig's Femur Using Mesenchymal Cells Originated from the Sinus Membrane with Different Scaffolds. Stem Cells Int 4185942 (2019).
23. Fioravanti, C. et al. Autologous blood preparations rich in platelets, fibrin and growth factors. Oral Implantol (Rome) 8, 96-113 (2016).
24. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317 (2006).
25. Srouji, S. et al. The Schneiderian Membrane Contains Osteoprogenitor Cells: In Vivo and In Vitro Study. Calcif Tissue Int 84, 138-145 (2009).
26. Graziano, A., et al. Bone production by human maxillary sinus mucosa cells. J Cell Physiol. 227, 3278-3281 (2012).
27. Shawky, H. & Seifeldin, S. A. Does Platelet-Rich Fibrin Enhance Bone Quality and Quantity of Alveolar Cleft Reconstruction? Cleft Palate Craniofac J 53, 597-606 (2016).
28. Dohan, D. M. et al. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101, e37-e44 (2006).
29. Miron, R. et al. Platelet Rich Fibrin and Soft Tissue Wound Healing: A Systematic Review. issue Eng Part B Rev 23, 83-99 (2016).
30. Dennison, D. K., Vallone, D. R., Pinero, G. J., Rittman, B. & Caffesse, R. G. Differential effect of TGF-beta 1 and PDGF on proliferation of periodontal ligament cells and gingival fibroblasts. J Periodontol 65, 641-648 (1994).
31. Bartold, P. M. Platelet-derived growth factor stimulates hyaluronate but not proteoglycan synthesis by human gingival fibroblasts in vitro. J Dent Res 72, 1473-1480 (1993).
32. Hock, J. M. & Canalis, E. Platelet-derived growth factor enhances bone cell replication, but not differentiated function of osteoblasts. Endocrinology 134, 1423-1428 (1994).
33. Apte, R. S., Chen, D. S. & Ferrara, N. VEGF in Signaling and Disease: Beyond Discovery and Development. Cell 176, 1248-1264 (2019).
34. Ogilvie, C. M., et al. Vascular endothelial growth factor improves bone repair in a murine nonunion model. Iowa Orthop J 32, 90-94 (2012).
35. Sharif, P. S. & Abdollahi, M. The Role of Platelets in Bone Remodeling. Inflamm Allergy Drug Targets 9, 393-399 (2010).
36. Tang, Y. et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15, 757-765 (2009).
37. Finnson, K. W., Parker, W. L., ten Dijke, P., Thorikay, M. & Philip, A. ALK1 Opposes ALK5/Smad3 Signaling and Expression of Extracellular Matrix Components in Human Chondrocytes. J Bone Miner Res 23,806-906 (2010).
38. Gomathi, K., Akshaya, N., Srinaath, N., Moorthi, A. & Selvamurugan, N. Regulation of Runx2 by post-translational modifications in osteoblast differentiation. Life Sci 245, 117389, (2020).
39. Zhang, J., Zhang, W., Dai, J., Wang, X. & Shen, S. G. Overexpression of Dlx2 enhances osteogenic differentiation of BMSCs and MC3T3-E1 cells via direct upregulation of Osteocalcin and Alp. Int J Oral Sci 11, 12 (2019).
40. Shoulders, M. D. & Raines, R. T. Collagen structure and stability. Annu Rev Biochem 78, 929-958, (2009).
41. Daigang, L. et al. LPS-stimulated inflammation inhibits BMP-9-induced osteoblastic differentiation through crosstalk between BMP/MAPK and Smad signaling. LPS-stimulated inflammation inhibits BMP-9-induced osteoblastic differentiation through crosstalk between BMP/MAPK and Smad signaling 341, 54-60 (2016).
42. Xiao, G., Wang, D., Benson, M. D., Karsenty, G. & Franceschi, R. T. Role of the α2-Integrin in Osteoblast-specific Gene Expression and Activation of the Osf2 Transcription Factor. J Biol Chem 273, 32988-32994 (1998).
43. Shi, Y. et al. Continuous cyclic mechanical tension inhibited Runx2 expression in mesenchymal stem cells through RhoA-ERK1/2 pathway. J Cell Physiol. 226, 2159-2169 (2011).
44. Chang, Y. C. & Zhao, J. H. Effects of platelet-rich fibrin on human periodontal ligament fibroblasts and application for periodontal infrabony defects. Aust Dent J 56, 365-371, (2011).
45 Neiva, R, F. et al. The Synergistic Effect of Leukocyte Platelet-Rich Fibrin and Micrometer/Nanometer Surface Texturing on Bone Healing around Immediately Placed Implants: An Experimental Study in Dogs. Biomed Res Int 9507342 (2016).
46. Pripatnanont, P., Balabid, F., Pongpanich, S. & Vongvatcharanon, S. Effect of osteogenic periosteal distraction by a modified Hyrax device with and without platelet-rich fibrin on bone formation in a rabbit model: A pilot study. Int J Oral Maxillofac Surg 44, 656-663 (2015).