[1] Taylor JP, Brown RJ, Cleveland DW. Decoding ALS: from genes to mechanism[J]. Nature. 2016,539(7628):197-206.
[2] Madruga E, Maestro I, Martinez A. Mitophagy Modulation, a New Player in the Race against ALS[J]. Int J Mol Sci. 2021,22(2).
[3] Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, Akkari PA. ALS Genetics, Mechanisms, and Therapeutics: Where Are We Now?[J]. Front Neurosci. 2019,13:1310.
[4] Mathew B, Ruiz P, Pathak V, Suto MJ. Development of novel small molecules for the treatment of ALS[J]. Bioorg Med Chem Lett. 2020,30(4):126950.
[5] Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis[J]. Nature. 1993,362(6415):59-62.
[6] Chen Y, Guan Y, Liu H, Wu X, Yu L, Wang SS, et al. Activation of the Wnt/beta-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice[J]. Biochem Biophys Res Commun. 2012,420(2):397-403.
[7] Tokuda E, Furukawa Y. Copper Homeostasis as a Therapeutic Target in Amyotrophic Lateral Sclerosis with SOD1 Mutations[J]. Int J Mol Sci. 2016,17(5):636.
[8] Li W, Fotinos A, Wu Q, Chen Y, Zhu Y, Baranov S, et al. N-acetyl-L-tryptophan delays disease onset and extends survival in an amyotrophic lateral sclerosis transgenic mouse model[J]. Neurobiol Dis. 2015,80:93-103.
[9] Blasco H, Patin F, Andres CR, Corcia P, Gordon PH. Amyotrophic Lateral Sclerosis, 2016: existing therapies and the ongoing search for neuroprotection[J]. Expert Opin Pharmacother. 2016,17(12):1669-1682.
[10] Sironi F, Vallarola A, Violatto MB, Talamini L, Freschi M, De Gioia R, et al. Multiple intracerebroventricular injections of human umbilical cord mesenchymal stem cells delay motor neurons loss but not disease progression of SOD1G93A mice[J]. Stem Cell Res. 2017,25(C):166-178.
[11] Modol-Caballero G, Garcia-Lareu B, Verdes S, Ariza L, Sánchez-Brualla I, Brocard F, et al. Therapeutic Role of Neuregulin 1 Type III in SOD1-Linked Amyotrophic Lateral Sclerosis[J]. Neurotherapeutics. 2020,17(3):1048-1060.
[12] Keeler AM, Zieger M, Semple C, Pucci L, Veinbachs A, Brown RH Jr, et al. Intralingual and Intrapleural AAV Gene Therapy Prolongs Survival in a SOD1 ALS Mouse Model[J]. Mol Ther Methods Clin Dev. 2020,17:246-257.
[13] Lim CKW, Gapinske M, Brooks AK, Woods WS, Powell JE, Zeballos C MA, et al. Treatment of a Mouse Model of ALS by In Vivo Base Editing[J]. Mol Ther. 2020,28(4):1177-1189.
[14] Huelsken J, Behrens J. The Wnt signalling pathway[J]. J Cell Sci. 2002,115(Pt 21):3977-3978.
[15] Komiya Y, Habas R. Wnt signal transduction pathways[J]. Organogenesis. 2008,4(2):68-75.
[16] Jiang X, Guan Y, Zhao Z, Meng F, Wang X, Gao X, et al. Potential Roles of the WNT Signaling Pathway in Amyotrophic Lateral Sclerosis[J]. Cells. 2021,10(4):839.
[17] Pinto C, Medinas DB, Fuentes-Villalobos F, Maripillán J, Castro AF, Martínez AD, et al. β-catenin aggregation in models of ALS motor neurons: GSK3β inhibition effect and neuronal differentiation[J]. Neurobiol Dis. 2019,130:104497.
[18] Serafino A, Giovannini D, Rossi S, Cozzolino M. Targeting the Wnt/beta-catenin pathway in neurodegenerative diseases: recent approaches and current challenges[J]. Expert Opin Drug Discov. 2020,15(7):803-822.
[19] Gonzalez-Fernandez C, Gonzalez P, Rodriguez FJ. New insights into Wnt signaling alterations in amyotrophic lateral sclerosis: a potential therapeutic target?[J]. Neural Regen Res. 2020,15(9):1580-1589.
[20] Kohn AD, Moon RT. Wnt and calcium signaling: beta-catenin-independent pathways[J]. Cell Calcium, 2005,38(3-4):439-446.
[21] Ng LF, Kaur P, Bunnag N, Suresh J, Sung ICH, Tan QH. WNT Signaling in Disease[J]. Cells. 2019,8(8):826.
[22] De A. Wnt/Ca2+ signaling pathway: a brief overview[J]. Acta Biochim Biophys Sin (Shanghai). 2011,43(10):745-756.
[23] Lund LM, McQuarrie IG. Calcium/calmodulin-dependent protein kinase IIbeta isoform is expressed in motor neurons during axon outgrowth and is part of slow axonal transport[J]. J Neurosci Res. 2002,67(6):720-728.
[24] Horigane S, Ageta-Ishihara N, Kamijo S, Fujii H, Okamura M, Kinoshita M. Facilitation of axon outgrowth via a Wnt5a-CaMKK-CaMKIalpha pathway during neuronal polarization[J]. Mol Brain. 2016,9:8.
[25] Arrazola MS, Silva-Alvarez C, Inestrosa NC. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario[J]. Front Cell Neurosci. 2015,9:166.
[26] Poletti A, Cattaneo E, Taroni F. The neurotoxicity of mutant proteins 20 years after the discovery of the first mutant gene involved in neurodegeneration. Foreword[J]. Prog Neurobiol. 2012,97(2):53.
[27] Chen Y, Guan Y, Zhang Z, Liu H, Wang S, Yu L. Wnt signaling pathway is involved in the pathogenesis of amyotrophic lateral sclerosis in adult transgenic mice[J]. Neurol Res. 2012,34(4):390-399.
[28] Zhang P, Luo X, Guo Z, Xiong A, Dong H, Zhang Q, et al. Neuritin Inhibits Notch Signaling through Interacted with Neuralized to Promote the Neurite Growth[J]. Front Mol Neurosci. 2017,10:179.
[29] Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis[J]. Acta Neuropathol. 2017,133(6):863-885.
[30] Subramaniam S. Selective Neuronal Death in Neurodegenerative Diseases: The Ongoing Mystery[J]. Yale J Biol Med. 2019,92(4):695-705.
[31] Coullery RP, Ferrari ME, Rosso SB. Neuronal development and axon growth are altered by glyphosate through a WNT non-canonical signaling pathway[J]. Neurotoxicology. 2016,52:150-161.
[32] Oskarsson B, Gendron TF, Staff NP. Amyotrophic Lateral Sclerosis: An Update for 2018[J]. Mayo Clin Proc. 2018,93(11):1617-1628.
[33] Kanning KC, Kaplan A, Henderson CE. Motor Neuron Diversity in Development and Disease[J]. Annu Rev Neurosci. 2010,33(1):409-440.
[34] Lattante S, Ciura S, Rouleau GA, Kabashi E. Defining the genetic connection linking amyotrophic lateral sclerosis (ALS) with frontotemporal dementia (FTD)[J]. Trends Genet. 2015,31(5):263-273.
[35] Kim G, Gautier O, Tassoni-Tsuchida E, Ma XR, Gitler AD. ALS Genetics: Gains, Losses, and Implications for Future Therapies[J]. Neuron. 2020,108(5):822-842.
[36] Bendotti C, Carrì MT. Lessons from models of SOD1-linked familial ALS[J]. Trends Mol Med. 2004,10(8):393-400.
[37] Vallee A, Lecarpentier Y. Alzheimer Disease: Crosstalk between the Canonical Wnt/Beta-Catenin Pathway and PPARs Alpha and Gamma[J]. Front Neurosci. 2016,10:459.
[38] Serafino A, Sferrazza G, Colini Baldeschi A, Nicotera G, Andreola F, Pittaluga E, et al. Developing drugs that target the Wnt pathway: recent approaches in cancer and neurodegenerative diseases[J]. Expert Opin Drug Discov. 2017,12(2):169-186.
[39] Marchetti B. Wnt/β-Catenin Signaling Pathway Governs a Full Program for Dopaminergic Neuron Survival, Neurorescue and Regeneration in the MPTP Mouse Model of Parkinson’s Disease[J]. Int J Mol Sci. 2018,19(12):3743.
[40] Yu L, Guan Y, Wu X, Chen Y, Liu Z, Du H, et al. Wnt Signaling is altered by spinal cord neuronal dysfunction in amyotrophic lateral sclerosis transgenic mice[J]. Neurochem Res. 2013,38(9):1904-1913.
[41] Li X, Guan Y, Chen Y, Zhang C, Shi C, Zhou F, et al. Expression of Wnt5a and its receptor Fzd2 is changed in the spinal cord of adult amyotrophic lateral sclerosis transgenic mice[J]. Int J Clin Exp Pathol. 2013,6(7):1245-1260.
[42] Chen Y, Wang Q, Wang Q, Liu H, Zhou F, Zhang Y, et al. DDX3 binding with CK1ε was closely related to motor neuron degeneration of ALS by affecting neurite outgrowth[J]. Am J Transl Res. 2017,9(10):4627.
[43] Aznar N, Sun N, Dunkel Y, Ear J, Buschman MD, Ghosh P. A Daple-Akt feed-forward loop enhances noncanonical Wnt signals by compartmentalizing β-catenin[J]. Mol Biol Cell. 2017,28(25):3709-3723.
[44] Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context[J]. PLoS Biol. 2006,4(4):e115.
[45] Chen CM, Orefice LL, Chiu SL, LeGates TA, Hattar S, Huganir RL, et al. Wnt5a is essential for hippocampal dendritic maintenance and spatial learning and memory in adult mice[J]. Proc Natl Acad Sci U S A. 2017,114(4):E619-E628.
[46] Kumawat K, Gosens R. WNT-5A: signaling and functions in health and disease[J]. Cell Mol Life Sci. 2016,73(3):567-587.
[47] Spalloni A, Origlia N, Sgobio C, Trabalza A, Nutini M, Berretta N, et al. Postsynaptic alteration of NR2A subunit and defective autophosphorylation of alphaCaMKII at threonine-286 contribute to abnormal plasticity and morphology of upper motor neurons in presymptomatic SOD1G93A mice, a murine model for amyotrophic lateral sclerosis[J]. Cereb Cortex. 2011,21(4):796-805.
[48] Van Den Bosch L, Van Damme P, Bogaert E, Robberecht W. The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis[J]. Biochim Biophys Acta. 2006,1762(11):1068-1082.
[49] Oka M, Fujisaki N, Maruko-Otake A, Ohtake Y, Shimizu S, Saito T, et al. Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy[J]. J Biochem. 2017,162(5):335-342.
[50] LaFerla FM. Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease[J]. Nat Rev Neurosci. 2002,3(11):862-872.
[51] Ghosh A, Giese KP. Calcium/calmodulin-dependent kinase II and Alzheimer's disease[J]. Mol Brain. 2015,8(1):78.
[52] Martin LJ. Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of a programmed cell death mechanism[J]. J Neuropathol Exp Neurol. 1999,58(5):459-471.
[53] Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, et al. Autophagy and apoptosis dysfunction in neurodegenerative disorders[J]. Prog Neurobiol. 2014,112:24-49.
[54] Han C, Li J, Wang C, Ouyang H, Ding X, Liu Y, et al. Wnt5a Contributes to the Differentiation of Human Embryonic Stem Cells into Lentoid Bodies Through the Noncanonical Wnt/JNK Signaling Pathway[J]. Invest Ophthalmol Vis Sci. 2018,59(8):3449-3460.
[55] Tahirovic S, Bradke F. Neuronal polarity[J]. Cold Spring Harb Perspect Biol. 2009,1(3):a1644.
[56] Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity[J]. Front Cell Neurosci. 2017,11:359.
[57] Osking Z, Ayers JI, Hildebrandt R, Skruber K, Brown H, Ryu D, et al. ALS-Linked SOD1 Mutants Enhance Neurite Outgrowth and Branching in Adult Motor Neurons[J]. iScience. 2019,19:448-449.
[58] Goshima Y, Ohsako S, Yamauchi T. Overexpression of Ca2+/calmodulin-dependent protein kinase II in Neuro2a and NG108-15 neuroblastoma cell lines promotes neurite outgrowth and growth cone motility[J]. J Neurosci. 1993,13(2):559-567.
[59] Arredondo SB, Guerrero FG, Herrera-Soto A, Jensen-Flores J, Bustamante DB, Oñate-Ponce A, et al. Wnt5a promotes
differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling[J]. STEM CELLS. 2020,38(3):422-436.