1. Muhammad, L. J., Algehyne, E. A. & Usman, S.S. Predictive Supervised Machine Learning Models for Diabetes Mellitus. SN Comput Sci. 1, 240 (2020).
2. Koh-Banerjee, P. et al. Changes in body weight and body fat distribution as risk factors for clinical diabetes in US men. Am. J. Epidemiol. 159, 1150-1159 (2004).
3. Shai, I. et al. Ethnicity, obesity, and risk of type 2 diabetes in women: a 20-year follow-up study. Diabetes Care 29, 1585-1590 (2006).
4. Wang Y. et al. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am. J. Clin. Nutr. 81, 555-563 (2005).
5. Toplak, H. et al. Obesity and type 2 diabetes. Wien. Klin. Wochenschr. 128, S196-200 (2016).
6. Yaghootkar L. et al. Genetic Evidence for a Link Between Favorable Adiposity and Lower Risk of Type 2 Diabetes, Hypertension, and Heart Disease. Diabetes 65, 2448-60 (2016).
7. Minster, R. L. et al. A thrifty variant in CREBRF strongly influences body mass index in Samoans. Nat. Genet. 48, 1049-1054 (2016) .
8. Loos, R. J. F., CREBRF variant increases obesity risk and protects against diabetes in Samoans. Nat. Genet. 48, 976-978 (2016).
9. Krishnan, M. et al. Discordant association of the CREBRF rs373863828 A allele with increased BMI and protection from type 2 diabetes in Maori and Pacific (Polynesian) people living in Aotearoa/New Zealand. Diabetologia 61, 1603-1613 (2018).
10. Hanson, R. L. et al. Association of CREBRF variants with obesity and diabetes in Pacific Islanders from Guam and Saipan. Diabetologia 62, 1647-1652 (2019).
11. Krishnan, M. et al. The Pacific-specific CREBRF rs373863828 allele protects against gestational diabetes mellitus in Maori and Pacific women with obesity. Diabetologia 63, 2169-2176 (2020).
12. Audas, T. E., Li, Y., Liang, G. & Lu, R. A novel protein, Luman/CREB3 recruitment factor, inhibits Luman activation of the unfolded protein response. Mol. Cell Biol. 28, 3952-3966 (2008).
13. Chan, C. P., Kok, K. H. & Jin, D. Y. CREB3 subfamily transcription factors are not created equal: Recent insights from global analyses and animal models. Cell Biosci. 1, 6 (2011).
14. Xue, H. et al. CREBRF is a potent tumor suppressor of glioblastoma by blocking hypoxia-induced autophagy via the CREB3/ATG5 pathway. Int. J. Oncol. 49, 519-528 (2016).
15. Xue, H. et al. A novel tumor-promoting mechanism of IL6 and the therapeutic efficacy of tocilizumab: Hypoxia-induced IL6 is a potent autophagy initiator in glioblastoma via the p-STAT3-MIR155-3p-CREBRF pathway. Autophagy 12, 1129-1152 (2016) .
16. Wong, N. K. P. et al. Exploring the Roles of CREBRF and TRIM2 in the Regulation of Angiogenesis by High-Density Lipoproteins. Int. J. Mol. Sci. 19, 1903 (2018).
17. Audas, T. E. et al. Characterization of nuclear foci-targeting of Luman/CREB3 recruitment factor (LRF/CREBRF) and its potential role in inhibition of herpes simplex virus-1 replication. Eur. J. Cell Biol. 95, 611-622 (2016).
18. Naka, I. et al. A missense variant, rs373863828-A (p.Arg457Gln), of CREBRF and body mass index in Oceanic populations. J. Hum. Genet. 62, 847-849 (2017).
19. Ohashi, J. et al. Association study of CREBRF missense variant (rs373863828:G > A; p.Arg457Gln) with levels of serum lipid profile in the Pacific populations. Ann. Hum. Biol. 45, 215-219 (2018).
20. Berry,S. D. et al. Widespread prevalence of a CREBRF variant amongst Maori and Pacific children is associated with weight and height in early childhood. Int. J. Obes (Lond). 42, 603-607 (2018).
21. Metcalfe, L.K., Krishnan, M., Turner,N., Yaghootkar, H., Merry, T. L., Dewes, O., et al. The Maori and Pacific specific CREBRF variant and adult height. Int J Obes (Lond). 44, 748-752 (2020).
22. Carlson, J. C. et al. A missense variant in CREBRF is associated with taller stature in Samoans. Am. J. Hum. Biol. 32, e23414 (2020).
23. Hawley, N. L. et al. Exploring the Paradoxical Relationship of a Creb 3 Regulatory Factor Missense Variant With Body Mass Index and Diabetes Among Samoans: Protocol for the Soifua Manuia (Good Health) Observational Cohort Study. JMIR Res. Protoc. 9, e17329 (2020).
24. Arslanian, K. J. et al. A missense variant in CREBRF, rs373863828, is associated with fat-free mass, not fat mass in Samoan infants. Int. J. Obes (Lond). 45, 45-55 (2021).
25. Martyn, A. C. et al. Luman/CREB3 recruitment factor regulates glucocorticoid receptor activity and is essential for prolactin-mediated maternal instinct. Mol. Cell Biol. 32, 5140-5150 (2012).
26. Frahm, K. A. et al. Loss of CREBRF Reduces Anxiety-like Behaviors and Circulating Glucocorticoids in Male and Female Mice. Endocrinology 161, bqaa163 (2020).
27. Aigner, B. et al. Transgenic pigs as models for translational biomedical research. J. Mol. Med. 88, 653-664 (2010).
28. Zettler, S. et al. A decade of experience with genetically tailored pig models for diabetes and metabolic research. Anim. Reprod. 17, e20200064 (2020).
29. Renner, S. et al. Comparative aspects of rodent and nonrodent animal models for mechanistic and translational diabetes research. Theriogenology 86, 406-421 (2016).
30. Spurlock, M. E. & Gabler, N. K. The Development of Porcine Models of Obesity and the Metabolic Syndrome. J. Nutr. 138, 397–402 (2008).
31. Renner, S. et al. Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res. 380, 341-378 (2020).
32. Hoang, D. T. et al. A conserved rule for pancreatic islet organization. PloS One. 9, e110384 (2014) .
33. Dufrane, D. et al. Impact of porcine islet size on cellular structure and engraftment after transplantation: adult versus young pigs. Pancreas. 30, 138–147 (2005).
34. Kim, S. et al. Molecular and genetic regulation of pig pancreatic islet cell development. Development 147, dev186213 (2020).
35. Bakhti, M., Böttcher, A. & Lickert, H., Modelling the endocrine pancreas in health and disease. Nat. Rev. Endocrinol. 15, 155–171 (2019).
36. Kang, J. D. et al. Apancreatic pigs cloned using Pdx1-disrupted fibroblasts created via TALEN-mediated mutagenesis. Oncotarget. 8, 115480–115489 (2017).
37. Sheets, T. P. et al. Targeted mutation of NGN3 gene disrupts pancreatic endocrine cell development in pigs. Sci. Rep. 8, 3582 (2018).
38. Zhang, L. et al. Development and genome sequencing of a laboratory-inbred miniature pig facilitates study of human diabetic disease. iScience 19, 162–176 (2019).
39. Zheng, Q. et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity. Proc. Natl. Acad. Sci. U. S. A. 114, E9474-E9482 (2017).
40. Thornalley, P. J., Langborg, A., Minhas, H. S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344,109-116(1999).
41. Ighodaro, O. M. Molecular pathways associated with oxidative stress in diabetes mellitus. Biomed. Pharmacother. 108, 656-662 (2018).
42. Murdolo, G. et al. Oxidative stress and lipid peroxidation by-products at the crossroad between adipose organ dysregulation and obesity-linked insulin resistance. Biochimie. 95, 585-594 (2013).
43. Jankovic, A. et al. Redox implications in adipose tissue (dys)function--A new look at old acquaintances. Redox Biol. 6, 19-32 (2015).
44. Church, C. et al. Overexpression of Fto leads to increased food intake and results in obesity. Nat. Genet. 42, 1086-1092 (2010).
45. Leeners, B., Geary, N., Tobler, P. N., & Asarian, L. Ovarian hormones and obesity. Hum. Reprod Update 23, 300-321 (2017).
46. Tsai, Y. T. et al. Antrodia cinnamomea Confers Obesity Resistance and Restores Intestinal Barrier Integrity in Leptin-deficient Obese Mice. Nutrients 12, 726 (2020).
47. Oka, T. et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 10, 21 (2010).
48. Andreasen, C. H. et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes 57, 95-101 (2008).
49. Thron, C. et al. FTO Is Associated with Aortic Valve Stenosis in a Gender Specific Manner of Heterozygote Advantage: A Population-Based Case-Control Study. PLoS One. 10, e0139419 (2015).
50. Chen, J. & Du, B. Novel positioning from obesity to cancer: FTO, an m 6 A RNA demethylase, regulates tumour progression. J. Cancer Res. Clin. Oncol. 145, 19-29 (2019).
51. Annapoorna, P. K. et al. FTO: An Emerging Molecular Player in Neuropsychiatric Diseases. Neuroscience 418, 15-24 (2019).
52. Goossens, G. H. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol. Behav. 94, 206-18 (2008).
53. Stinkens, R., Goossens, G. H., Jocken, J. W. E. & Blaak, E. E. Targeting fatty acid metabolism to improve glucose metabolism. Obes. Rev. 16, 715–757 (2015).
54. Chaurasia, B. & Summers, S. A. Ceramides - Lipotoxic Inducers of Metabolic Disorders. Trends Endocrinol. Metab. 26, 538-550 (2015).
55. Perry, R. J., Samuel, V. T., Petersen, K. F. & Shulman, G. I. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 510, 84-91 (2014).
56. Unger, R. H. Longevity, lipotoxicity and leptin: the adipocyte defense against feasting and famine. Biochimie. 87, 57-64 (2005).
57. Cancello, R. et al. Molecular and morphologic characterization of superficial- and deep-subcutaneous adipose tissue subdivisions in human obesity. Obesity (Silver Spring) 21, 2562-2570 (2013).
58. Marinou, K. et al. Structural and functional properties of deep abdominal subcutaneous adipose tissue explain its association with insulin resistance and cardiovascular risk in men. Diabetes Care 3, 821-829 (2014) .
59. Xue, P. et al. Prolonged inorganic arsenite exposure suppresses insulin-stimulated AKT S473 phosphorylation and glucose uptake in 3T3-L1 adipocytes: involvement of the adaptive antioxidant response. Biochem. Biophys. Res. Commun. 407, 360-365 (2011).
60. Aouadi, M. et al. Lipid storage by adipose tissue macrophages regulates systemic glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 307, E374-383 (2014).
61. Sun, K. , Kusminski, C. M. & Scherer, P. E. Adipose tissue remodeling and obesity. J. Clin. Invest.121, 2094-2101 (2011).
62. Lefterova, M. I. & Lazar, M. A., New developments in adipogenesis. Trends Endocrinol. Metab. 20, 107-114 (2009).
63. Rosen, E. D. & MacDougald, O. A. Adipocyte differentiation from the inside out, Nat. Rev. Mol. Cell Biol. 7, 885-896 (2006).
64. Tang, Q. Q. & Lane, M.D., Adipogenesis: from stem cell to adipocyte. Annu. Rev. Biochem. 81, 715-736 (2012).
65. Boden, G. Free fatty acids (FFA), a link between obesity and insulin resistance. Front Biosci. 3, d169-75 (1998) .
66. Boden, G. Free fatty acids-the link between obesity and insulin resistance. Endocr. Pract. 7, 44-51(2001).
67. Rossmeisl, M. et al. Increased plasma levels of palmitoleic acid may contribute to beneficial effects of Krill oil on glucose homeostasis in dietary obese mice. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 1865, 158732 (2020).
68. Maritim, A. C., Sanders, R. A. & Watkins, J. B. Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. 17, 24-38 (2003).
69. Yang, H., Jin ,X., Lam, C. W. K. & Yan, S. K. Oxidative stress and diabetes mellitus. Clin. Chem. Lab. Med. 49, 1773-1782 (2011).
70. Newsholme, P. et al. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 473, 4527-4550 (2016).
71. Fernández-Sánchez, A. et al. Inflammation, oxidative stress, and obesity. Int. J. Mol. Sci. 12, 3117-3132 (2011).
72. Furukawa, S. et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752-1761 (2004).
73. Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 524, 13-30 (2017).
74. Su L. J. et al. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid. Med. Cell Longev. 2019, 5080843 (2019).
75. Liu, J. et al. Peroxisomal regulation of redox homeostasis and adipocyte metabolism. Redox Biol. 24, 101167 (2019).
76. Lai, L. & Prather, R.S. Production of cloned pigs by using somatic cells as donors. Cloning Stem Cells 5, 233-241 (2003).