1 Li, C.-J. & Anastas, P. T. Green Chemistry: present and future. Chemical Society Reviews 41, 1413-1414, doi:10.1039/C1CS90064A (2012).
2 Sheldon, R. A. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustainable Chemistry & Engineering 6, 32-48 (2018).
3 Erythropel, H. C. et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green chemistry 20, 1929-1961 (2018).
4 Ganesh, K. N. et al. Green Chemistry: A Framework for a Sustainable Future. Organic Process Research & Development 25, 1455-1459, doi:10.1021/acs.oprd.1c00216 (2021).
5 Bilal, M., Zhao, Y., Rasheed, T. & Iqbal, H. M. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International journal of biological macromolecules 120, 2530-2544 (2018).
6 Gdovinová, V. et al. Memory effect in nematic phase of liquid crystal doped with magnetic and non-magnetic nanoparticles. Journal of Molecular Liquids 282, 286-291 (2019).
7 Félix, L. L. et al. Gold-decorated magnetic nanoparticles design for hyperthermia applications and as a potential platform for their surface-functionalization. Scientific reports 9, 1-11 (2019).
8 Moghanizadeh, A., Ashrafizadeh, F., Varshosaz, J. & Ferreira, A. Study the effect of static magnetic field intensity on drug delivery by magnetic nanoparticles. Scientific Reports 11, 1-13 (2021).
9 Bai, C. et al. Synthesis of Ultrasmall Fe3O4 Nanoparticles as T 1–T 2 Dual-Modal Magnetic Resonance Imaging Contrast Agents in Rabbit Hepatic Tumors. ACS Applied Nano Materials 3, 3585-3595 (2020).
10 Lu, C. et al. Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chemical Society Reviews (2021).
11 Garanina, A. S. et al. Temperature-controlled magnetic nanoparticles hyperthermia inhibits primary tumor growth and metastases dissemination. Nanomedicine: Nanotechnology, Biology and Medicine 25, 102171 (2020).
12 Lavorato, G. C., Das, R., Masa, J. A., Phan, M.-H. & Srikanth, H. Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications. Nanoscale Advances 3, 867-888 (2021).
13 Wang, Z., Guo, J., Ma, J. & Shao, L. Highly regenerable alkali-resistant magnetic nanoparticles inspired by mussels for rapid selective dye removal offer high-efficiency environmental remediation. Journal of Materials Chemistry A 3, 19960-19968 (2015).
14 Saranya, S., Aneeja, T., Neetha, M. & Anilkumar, G. Recent advances in the iron‐catalysed multicomponent reactions. Applied Organometallic Chemistry 34, e5991 (2020).
15 Zhang, Q., Yang, X. & Guan, J. Applications of magnetic nanomaterials in heterogeneous catalysis. ACS Applied Nano Materials 2, 4681-4697 (2019).
16 Shylesh, S., Schünemann, V. & Thiel, W. R. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition 49, 3428-3459 (2010).
17 Ghereghlou, M., Esmaeili, A. A. & Darroudi, M. Preparation of [email protected] C‐dots as a recyclable magnetic nanocatalyst using Elaeagnus angustifolia and its application for the green synthesis of formamidines. Applied Organometallic Chemistry, e6387 (2021).
18 Karami, S., Dekamin, M. G., Valiey, E. & Shakib, P. DABA MNPs: A new and efficient magnetic bifunctional nanocatalyst for the green synthesis of biologically active pyrano [2, 3-c] pyrazole and benzylpyrazolyl coumarin derivatives. New Journal of Chemistry 44, 13952-13961 (2020).
19 Alirezvani, Z., Dekamin, M. G. & Valiey, E. Cu (II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Scientific reports 9, 1-12 (2019).
20 Simonsen, G., Strand, M. & Øye, G. Potential applications of magnetic nanoparticles within separation in the petroleum industry. Journal of Petroleum Science and Engineering 165, 488-495 (2018).
21 Zhou, K., Zhou, X., Liu, J. & Huang, Z. Application of magnetic nanoparticles in petroleum industry: A review. Journal of Petroleum Science and Engineering 188, 106943 (2020).
22 Yeap, S. P., Lim, J., Ooi, B. S. & Ahmad, A. L. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications. Journal of Nanoparticle Research 19, 1-15 (2017).
23 Chen, J. et al. Structural Regulation of Magnetic Polymer [email protected] Ionic Liquids with an Intermediate Protective Layer and Application as Core–Shell–Shell Catalysts with High Stability and Activity. ACS omega 5, 23062-23069 (2020).
24 Trifonov, A., Stemmer, A. & Tel-Vered, R. Carbon-coated magnetic nanoparticles as a removable protection layer extending the operation lifetime of bilirubin oxidase-based bioelectrode. Bioelectrochemistry 137, 107640 (2021).
25 Martínez-Prieto, L. M. et al. Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis. ACS Applied Nano Materials 3, 7076-7087, doi:10.1021/acsanm.0c01392 (2020).
26 Ziegler-Borowska, M. Magnetic nanoparticles coated with aminated starch for HSA immobilization-simple and fast polymer surface functionalization. International journal of biological macromolecules 136, 106-114 (2019).
27 de Mendonça, E. S. D. T. et al. Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surfaces and Interfaces 14, 34-43 (2019).
28 Gad, Y. H. & Elbarbary, A. M. Radiation synthesis of Fe3O4/SiO2/glycidyl methacrylate/acrylonitrile nanocomposite for adsorption of basic violet 7 dye: Kinetic, isotherm, and thermodynamic study. Applied Organometallic Chemistry 35, e6258 (2021).
29 Sharma, U. K., Ranjan, P., Van der Eycken, E. V. & You, S.-L. Sequential and direct multicomponent reaction (MCR)-based dearomatization strategies. Chemical Society Reviews 49, 8721-8748 (2020).
30 Keshavarz, M., Dekamin, M. G., Mamaghani, M. & Nikpassand, M. Tetramethylguanidine-functionalized melamine as a multifunctional organocatalyst for the expeditious synthesis of 1, 2, 4-triazoloquinazolinones. Scientific reports 11, 1-14 (2021).
31 Slobbe, P., Ruijter, E. & Orru, R. V. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm 3, 1189-1218 (2012).
32 Khumalo, M. R., Maddila, S. N., Maddila, S. & Jonnalagadda, S. B. A multicomponent, facile and catalyst-free microwave-assisted protocol for the synthesis of pyrazolo-[3, 4-b]-quinolines under green conditions. RSC advances 9, 30768-30772 (2019).
33 Ebrahimiasl, H., Azarifar, D., Rakhtshah, J., Keypour, H. & Mahmoudabadi, M. Application of novel and reusable [email protected] CoII (macrocyclic Schiff base ligand) for multicomponent reactions of highly substituted thiopyridine and 4H‐chromene derivatives. Applied Organometallic Chemistry 34, e5769 (2020).
34 Dekamin, M. G., Azimoshan, M. & Ramezani, L. Chitosan: a highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chemistry 15, 811-820 (2013).
35 Alirezvani, Z., Dekamin, M. G. & Valiey, E. New Hydrogen-Bond-Enriched 1, 3, 5-Tris (2-hydroxyethyl) Isocyanurate Covalently Functionalized MCM-41: An Efficient and Recoverable Hybrid Catalyst for Convenient Synthesis of Acridinedione Derivatives. ACS omega 4, 20618-20633 (2019).
36 Valiey, E., Dekamin, M. G. & Alirezvani, Z. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano [2, 3-c] pyrazole and benzylpyrazolyl coumarin derivatives. International journal of biological macromolecules 129, 407-421 (2019).
37 Akbari, A., Dekamin, M. G., Yaghoubi, A. & Naimi-Jamal, M. R. Novel magnetic propylsulfonic acid-anchored isocyanurate-based periodic mesoporous organosilica (Iron [email protected] PMO-ICS-PrSO 3 H) as a highly efficient and reusable nanoreactor for the sustainable synthesis of imidazopyrimidine derivatives. Scientific Reports 10, 1-16 (2020).
38 John, S. E., Gulati, S. & Shankaraiah, N. Recent advances in multi-component reactions and their mechanistic insights: a triennium review. Organic Chemistry Frontiers (2021).
39 Cioc, R. C., Ruijter, E. & Orru, R. V. Multicomponent reactions: advanced tools for sustainable organic synthesis. Green Chemistry 16, 2958-2975 (2014).
40 Basu, S., Chatterjee, S., Bhaumik, A. & Mukhopadhyay, C. Ultrasound‐promoted novel route to triazabenzo [b] cyclopenta [lm] fluorenes: An efficient [email protected] SiO2–SO3H nanocatalyst‐assisted green synthesis. Applied Organometallic Chemistry, e6426.
41 Abbaspour-Gilandeh, E., Yahyazadeh, A. & Aghaei-Hashjin, M. One-pot synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones catalyzed by SO 3 [email protected] imineZCMNPs as a novel, efficient and reusable acidic nanocatalyst under solvent-free conditions. RSC advances 8, 40243-40251 (2018).
42 Essid, I., Lahbib, K., Kaminsky, W., Nasr, C. B. & Touil, S. 5-phosphonato-3, 4-dihydropyrimidin-2 (1H)-ones: Zinc triflate-catalyzed one-pot multi-component synthesis, X-ray crystal structure and anti-inflammatory activity. Journal of Molecular Structure 1142, 130-138 (2017).
43 Meng, F.-J., Shi, L., Feng, G.-S., Sun, L. & Zhou, Y.-G. Enantioselective Synthesis of 3, 4-Dihydropyrimidin-2 (1 H)-ones through Organocatalytic Transfer Hydrogenation of 2-Hydroxypyrimidines. The Journal of organic chemistry 84, 4435-4442 (2019).
44 Aher, D. S., Khillare, K. R., Chavan, L. D. & Shankarwar, S. G. Tungsten-substituted molybdophosphoric acid impregnated with kaolin: effective catalysts for the synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones via biginelli reaction. RSC Advances 11, 2783-2792 (2021).
45 Matias, M. et al. Potential antitumoral 3, 4-dihydropyrimidin-2-(1 H)-ones: Synthesis, in vitro biological evaluation and QSAR studies. RSC advances 6, 84943-84958 (2016).
46 Venkatapathy, K., Magesh, C., Lavanya, G., Perumal, P. & Sathishkumar, R. A nanocrystalline CdS thin film as a heterogeneous, recyclable catalyst for effective synthesis of dihydropyrimidinones and a new class of carbazolyl dihydropyrimidinones via an improved Biginelli protocol. New Journal of Chemistry 43, 10989-11002 (2019).
47 Shaabani, A., Bazgir, A. & Teimouri, F. Ammonium chloride-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions. Tetrahedron Letters 44, 857-859, doi:https://doi.org/10.1016/S0040-4039(02)02612-6 (2003).
48 Patil, R. V., Chavan, J. U., Dalal, D. S., Shinde, V. S. & Beldar, A. G. Biginelli reaction: polymer supported catalytic approaches. ACS combinatorial science 21, 105-148 (2019).
49 Yao, B.-J., Wu, W.-X., Ding, L.-G. & Dong, Y.-B. Sulfonic Acid and Ionic Liquid Functionalized Covalent Organic Framework for Efficient Catalysis of the Biginelli Reaction. The Journal of Organic Chemistry 86, 3024-3032 (2021).
50 Freitas, E. F. et al. Tuning the Biginelli reaction mechanism by the ionic liquid effect: the combined role of supported heteropolyacid derivatives and acidic strength. RSC advances 9, 27125-27135 (2019).
51 Shaabani, A., Sarvary, A., Rahmati, A. & Rezayan, A. H. Ionic Liquid/Silica Sulfuric Acid Promoted Fast Synthesis of a Biginelli-Like Scaffold Reaction. Letters in Organic Chemistry 4, 68-71, doi:http://dx.doi.org/10.2174/157017807780037531 (2007).
52 Verma, A., De, D., Tomar, K. & Bharadwaj, P. K. An amine functionalized metal–organic framework as an effective catalyst for conversion of CO2 and Biginelli reactions. Inorganic chemistry 56, 9765-9771 (2017).
53 Patel, U., Parmar, B., Patel, P., Dadhania, A. & Suresh, E. The synthesis and characterization of Zn (ii)/Cd (ii) based MOFs by a mixed ligand strategy: a Zn (ii) MOF as a dual functional material for reversible dye adsorption and as a heterogeneous catalyst for the Biginelli reaction. Materials Chemistry Frontiers 5, 304-314 (2021).
54 Phukan, A. et al. An efficient and robust heterogeneous mesoporous montmorillonite clay catalyst for the Biginelli type reactions. Advanced Powder Technology 28, 1585-1592 (2017).
55 Sheykhan, M., Yahyazadeh, A. & Ramezani, L. A novel cooperative Lewis acid/Brønsted base catalyst [email protected] SiO2-APTMS-Fe (OH) 2: An efficient catalyst for the Biginelli reaction. Molecular Catalysis 435, 166-173 (2017).
56 Li, N. et al. Air‐stable zirconium (IV)‐salophen perfluorooctanesulfonate as a highly efficient and reusable catalyst for the synthesis of 3, 4‐dihydropyrimidin‐2‐(1H)‐ones/thiones under solvent-free conditions. Applied Organometallic Chemistry 34, e5454 (2020).
57 Khatri, C. K., Rekunge, D. S. & Chaturbhuj, G. U. Sulfated polyborate: a new and eco-friendly catalyst for one-pot multi-component synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones/thiones via Biginelli reaction. New Journal of Chemistry 40, 10412-10417 (2016).
58 Dekamin, M. G., Mehdipoor, F. & Yaghoubi, A. 1, 3, 5-Tris (2-hydroxyethyl) isocyanurate functionalized graphene oxide: a novel and efficient nanocatalyst for the one-pot synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones. New Journal of Chemistry 41, 6893-6901 (2017).
59 Wang, Y. T., Tang, G. M. & Wu, Y. S. A Set of phenyl sulfonate metal coordination complexes triggered Biginelli reaction for the high efficient synthesis of 3, 4‐dihydropyrimidin‐2 (1H)‐ones under solvent‐free conditions. Applied Organometallic Chemistry 34, e5542 (2020).
60 Valiey, E., Dekamin, M. G. & Alirezvani, Z. Sulfamic acid pyromellitic diamide-functionalized MCM-41 as a multifunctional hybrid catalyst for melting-assisted solvent-free synthesis of bioactive 3, 4-dihydropyrimidin-2-(1 H)-ones. Scientific Reports 11, 1-15 (2021).
61 Nasresfahani, Z. & Kassaee, M. Z. Cu (II) immobilized on mesoporous organosilica as an efficient and reusable nanocatalyst for one‐pot Biginelli reaction under solvent‐free conditions. Applied Organometallic Chemistry 32, e4106 (2018).
62 Safaei-Ghomi, J., Tavazo, M. & Mahdavinia, G. H. Ultrasound promoted one-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones using dendrimer-attached phosphotungstic acid nanoparticles immobilized on nanosilica. Ultrasonics sonochemistry 40, 230-237 (2018).
63 Kęciek, A., Paprocki, D., Koszelewski, D. & Ostaszewski, R. Evaluation of alcohols as substrates for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones under environmentally friendly conditions. Catalysis Communications 135, 105887 (2020).
64 Yu, T., Xue, Z., Zhao, X., Chen, W. & Mu, T. Green synthesis of porous β-cyclodextrin polymers for rapid and efficient removal of organic pollutants and heavy metal ions from water. New Journal of Chemistry 42, 16154-16161 (2018).
65 Zhang, K. et al. EDTA-based adsorbents for the removal of metal ions in wastewater. Coordination Chemistry Reviews 434, 213809 (2021).
66 Danesh, N., Ghorbani, M. & Marjani, A. Separation of copper ions by nanocomposites using adsorption process. Scientific Reports 11, 1-23 (2021).
67 Zhao, F. et al. One-pot synthesis of trifunctional chitosan-EDTA-β-cyclodextrin polymer for simultaneous removal of metals and organic micropollutants. Scientific reports 7, 1-14 (2017).
68 Tong, W. H. Comment on “Pharmacodynamics of cerebrospinal fluid asparagine after asparaginase”. Cancer Chemotherapy and Pharmacology, 1-2 (2021).
69 Wang, X. et al. Microwave-assisted synthesis, characterization, cell imaging of fluorescent carbon dots using l-asparagine as precursor. New Journal of Chemistry 43, 3323-3331 (2019).
70 Saikia, G. et al. Polymer immobilized tantalum (v)–amino acid complexes as selective and recyclable heterogeneous catalysts for oxidation of olefins and sulfides with aqueous H 2 O 2. New Journal of Chemistry 43, 17251-17266 (2019).
71 Jin, C. et al. Magnetic iron oxide nanoparticles coated by hierarchically structured silica: a highly stable nanocomposite system and ideal catalyst support. 2, 11202-11208 (2014).
72 An, F. & Gao, B. J. J. o. h. m. Chelating adsorption properties of PEI/SiO2 for plumbum ion. 145, 495-500 (2007).
73 Kargar, S., Elhamifar, D. & Zarnegaryan, A. Core–shell structured [email protected] SiO2-supported IL/[Mo6O19]: A novel and magnetically recoverable nanocatalyst for the preparation of biologically active dihydropyrimidinones. Journal of Physics and Chemistry of Solids 146, 109601 (2020).
74 Safari, J. & Gandomi-Ravandi, S. Titanium dioxide supported on MWCNTs as an eco-friendly catalyst in the synthesis of 3, 4-dihydropyrimidin-2-(1 H)-ones accelerated under microwave irradiation. New Journal of Chemistry 38, 3514-3521 (2014).
75 Bairagi, K. M. et al. Larvicidal study of tetrahydropyrimidine scaffolds against Anopheles arabiensis and structural insight by single crystal X‐ray studies. Chemical biology & drug design 92, 1924-1932 (2018).
76 Majellaro, M. et al. 3, 4-Dihydropyrimidin-2 (1 H)-ones as Antagonists of the Human A2B Adenosine Receptor: Optimization, Structure–Activity Relationship Studies, and Enantiospecific Recognition. Journal of Medicinal Chemistry (2020).
77 Esmaeili, R., Kafi-Ahmadi, L. & Khademinia, S. A highly efficient one-pot multicomponent synthesis of 3, 4-dihydropyrimidin-2-(1H)-ones/thiones catalyzed by strontium pyroarsenate nano-plates. Journal of Molecular Structure 1216, 128124 (2020).
78 do Nascimento, L. G. et al. Niobium oxides as heterogeneous catalysts for Biginelli multicomponent reaction. The Journal of Organic Chemistry 85, 11170-11180 (2020).
79 Dunn, P. J., Galvin, S. & Hettenbach, K. The development of an environmentally benign synthesis of sildenafil citrate (Viagra™) and its assessment by Green Chemistry metrics. Green chemistry 6, 43-48 (2004).
80 Singh, P., Yadav, P., Mishra, A. & Awasthi, S. K. Green and mechanochemical one-pot multicomponent synthesis of bioactive 2-amino-4 H-benzo [b] pyrans via highly efficient amine-functionalized [email protected] Fe3O4 nanoparticles. ACS omega 5, 4223-4232 (2020).
81 Constable, D. J., Curzons, A. D. & Cunningham, V. L. Metrics to ‘green’chemistry—which are the best? Green Chemistry 4, 521-527 (2002).
82 Zamani, F. & Izadi, E. Synthesis and characterization of sulfonated-phenylacetic acid coated Fe3O4 nanoparticles as a novel acid magnetic catalyst for Biginelli reaction. Catalysis Communications 42, 104-108 (2013).
83 Wang, B., Wei, Q. & Qu, S. Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation methods. Int. J. Electrochem. Sci 8, 3786-3793 (2013).
84 Stöber, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of colloid and interface science 26, 62-69 (1968).
85 Jafarzadeh, M., Soleimani, E., Norouzi, P., Adnan, R. & Sepahvand, H. Preparation of trifluoroacetic acid-immobilized [email protected] SiO2–APTES nanocatalyst for synthesis of quinolines. Journal of Fluorine Chemistry 178, 219-224 (2015).
86 Repo, E., Kurniawan, T. A., Warchol, J. K. & Sillanpää, M. E. Removal of Co (II) and Ni (II) ions from contaminated water using silica gel functionalized with EDTA and/or DTPA as chelating agents. Journal of hazardous materials 171, 1071-1080 (2009).