[1] L. Holmlid and S. Zeiner-Gundersen, "Ultradense protium p(0) and deuterium D(0) and their relation to ordinary Rydberg matter: a review". Physica Scripta 74 (7) 2019.
Doi: 10.1088/1402-4896/ab1276.
[2] L. Holmlid, “Laser-mass spectrometry study of ultra-dense protium p(-1) with variable time-of-flight energy and flight length”.
Int. J. Mass Spectrom. 351 (2013) 61-68. DOI: 10.1016/j.ijms.2013.04.006
[3]. L. Holmlid, “Emission spectroscopy of IR laser-induced processes in ultra-dense deuterium D(0): Rotational transitions with spin values s = 2, 3 and 4”.
Mol. Struct. 1130 (2017) 829–836. Doi: 10.1016/j.molstruc.2016.10.091.
[4]. L. Holmlid, “Rotational emission spectroscopy in ultra-dense hydrogen p(0) and pxDy(0): groups pN, pD2, p2D and (pD)N”. Journal of Molecular Structure 1173, 567-573 (2018) https://doi.org/10.1016/j.molstruc.2018.06.116.
[5] L. Holmlid, “Excitation levels in ultra-dense hydrogen p(-1) and d(-1) clusters: structure of spin-based Rydberg Matter”. Int. J. Mass Spectrom. 352 (2013) 1- 8. DOI: 10.1016/j.ijms.2013.08.003.
[6] L L. Holmlid, “Two-collector timing of 3-14 MeV/u particles from laser-induced processes in ultra-dense deuterium”.
Int. J. Modern Phys. E 22 (2013) 1350089. DOI: 10.1142/S0218301313500894
[7] F. Olofson and L. Holmlid, “Electron-positron pair production observed from laser-induced processes in ultra-dense deuterium D(-1)”.
Laser Part. Beams 32 (2014) 537-548. doi:10.1017/S0263034614000494.
[8] F. Olofson and L. Holmlid, “Time-of-flight of He ions from laser-induced processes in ultra-dense deuterium D(0)”.
Int. J. Mass Spectrom. 374 (2014) 33–38. DOI: 10.1016/j.ijms.2014.10.004.
[9] L . Holmlid, “Heat generation above break-even from laser-induced fusion in ultra-dense deuterium”. AIP Advances 5 (2015) 087129. doi: 10.1063/1.4928572.
[10]. L. Holmlid, “Decay-times of pions and kaons formed by laser-induced nuclear processes in ultra-dense hydrogen H(0))”. Submitted.
[11]. L. Holmlid and S. Olafsson, “Decay of muons generated by laser-induced processes in ultra-dense hydrogen”. Heliyon 5 (6) (2019) e01864. Doi: 10.1016/j.heliyon.2019.e01864.
[12] L L. Holmlid, “MeV particles in a decay chain process from laser-induced processes in ultra-dense deuterium D(0)”. Int. J. Modern Phys. E 24 (2015) 1550026. DOI: 10.1142/S0218301315500263
[13] L. Holmlid, Int. J. Modern Phys. E 24, 1550080 (2015).DOI: 10.1142/S0218301315500809.
[14] L. Holmlid, "Existing source for muon-catalyzed nuclear fusion can give MW thermal fusion generator". Fusion Science and Technology, 75:3, 208-217, DOI: 10.1080/15361055.2018.1546090.
[15]. L. Holmlid. “Controlling the process of muon formation for muon-catalyzed fusion: method of non-destructive average muon sign detection”. Submitted.
[16]. Holmlid, “Mesons from laser-induced processes in ultra-dense hydrogen H(0)”.
PLOS ONE 12 (2017) e0169895. doi:10.1371/journal.Pone.0169895. Original pdf exists at https://gup.ub.gu.se/file/208005.
[17] L. Holmlid, “Laser-induced nuclear processes in ultra-dense hydrogen take place in small non-superfluid HN(0) clusters”. Journal of Cluster Science, 30(1), (2019) 235-242. DOI: 10.1007/s10876-018-1480-5.
[18] L. Holmlid, “High-charge Coulomb explosions of clusters in ultra-dense deuterium D(-1)”. Int. J. Mass Spectrom. 304 (2011) 51–56.doi: 10.1016/j.ijms.2011.04.001.
[19] C. Nordling and J. Österman, Physics Handbook (Studentlitteratur, Lund, Sweden 1988).
[20] W. E. Burcham and M. Jobes, "Nuclear and Particle Physics", Pearson, Harlow 1995.
[21] A. Kamal, "Particle Physics", Springer-Verlag, Berlin Heidelberg 2014.
[22] Particle Data Group, M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018). (URL: http://pdg.lbl.gov).
[23]. L.Holmlid, “Muons with different sign from laser-induced nuclear processes in ultra-dense protium p(0) and ultra-dense deuterium D(0)”. Submitted.
[24]. Hurricane, O., Callahan, D., Casey, D. et al. Fuel gain exceeding unity in an inertially confined fusion implosion. Nature 506, 343–348 (2014) https://doi.org/10.1038/nature13008.
[25]. L. Holmlid, “Ultra-dense hydrogen H(-1) as the cause of instabilities in laser compression-based nuclear fusion”. J. Fusion Energy 33 (2014) 348-350.DOI: 10.1007/s10894-014-9681-x.
[26]. Fact Sheet Tritium, https://nuclearsafety.gc.ca/eng/pdfs/Fact_Sheets/January-2013-Fact-Sheet-Tritium_e.pdf . Read 2020-07-09.
[27]. H. Hora, G. H. Miley, M. Ghoranneviss, B. Malekynia, N. Azizic and X.-T. He, “Fusion energy without radioactivity: laser ignition of solid hydrogen–boron (11) fuel”, Energy Environ. Sci., (2010), 3, 479–486, DOI: 10.1039/b904609g.
[28] Balin DV, Ganzha VA, Kozlov SM, Maev EM, Petrov GE, Soroka MA, Schapkin GN, Semenchuk GG, Trofimov VA, Vasiliev AA, Vorobyov AA, Voropaev NI, Petitjean C, Gartner B, Lauss B, Marton J, Zmeskalc J, Case T, Crowe KM, Kammel P, Hartmann FJ, Faifman MP. Phys. Part. Nuclei 42, 185-214 (2011) https://doi.org/10.1134/S106377961102002X
[29]. L. W. Alvarez et al., “Catalysis of Nuclear Reactions by μ Mesons,” Phys. Rev., 105, 1127 (1957); https://doi.org/10.1103/PhysRev.105.1127.
[30] . Holmlid, “Apparatus for generating muons with intended use in a fusion reactor”. Patent nr SE 539684 C 2.
[31]. M. Filipowicz et al., “Kinetics of Muon Catalyzed Fusion Processes in Solid H/D Mixture,” Eur. Pys. J. D, 47, 157 (2008); https://doi.org/10.1140/epjd/e2008-00021-7.
[32]. J. L. Friar et al., “Nuclear Transition Rates in μ-catalyzed P-D Fusion,” Phys. Rev. Lett., 66, 1827 (1991); https://doi.org/10.1103/PhysRevLett.66.1827.
[33]. R. S. Kelly, “Muon Catalyzed Fusion. An Investigation of Reactor Design”, Thesis, September 2018, Department of Physics, Imperial College London.
https://doi.org/10.25560/68290
[34]. L. Holmlid, “Neutrons from muon-catalyzed fusion and from capture processes in an ultra-dense hydrogen H(0) generator”. Fusion Science and Technology 74:3 (2018) 219-228, DOI: 10.1080/15361055.2017.1421366
[35]. L. Holmlid and S. Zeiner-Gundersen, “Future interstellar rockets may use laser-induced annihilation reactions for relativistic drive”. Acta Astronautica 175 (2020) 32-36. https://doi.org/10.1016/j.actaastro.2020.05.034.