[1] W. Lin, Introduction: nanoparticles in medicine, Chemical reviews, 115 (2015) 10407-10409.
[2] N.T. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chemical reviews, 114 (2014) 7610-7630.
[3] B. Devadas, A.P. Periasamy, K. Bouzek, A review on poly (amidoamine) dendrimer encapsulated nanoparticles synthesis and usage in energy conversion and storage applications, Coordination Chemistry Reviews, 444 (2021) 214062.
[4] M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Cu and Cu-based nanoparticles: synthesis and applications in catalysis, Chemical reviews, 116 (2016) 3722-3811.
[5] S. Ghotekar, H. Dabhane, S. Pansambal, R. Oza, P. Tambade, V. Medhane, A review on biomimetic synthesis of Ag2O nanoparticles using plant extract, characterization and its recent applications, Advanced Journal of Chemistry-Section B, 2 (2020) 102-111.
[6] T. Pagar, S. Ghotekar, S. Pansambal, R. Oza, B.P. Marasini, Facile plant extract mediated eco-benevolent synthesis and recent applications of CaO-NPs: A state-of-the-art review, Journal of Chemical Reviews, 2 (2020) 201-210.
[7] S. Matussin, M.H. Harunsani, A.L. Tan, M.M. Khan, Plant-extract-mediated SnO2 nanoparticles: synthesis and applications, ACS Sustainable Chemistry & Engineering, 8 (2020) 3040-3054.
[8] S. Ghotekar, S. Pansambal, M. Bilal, S.S. Pingale, R. Oza, Environmentally friendly synthesis of Cr2O3 nanoparticles: Characterization, applications and future perspective─ a review, Case Studies in Chemical and Environmental Engineering, 3 (2021) 100089.
[9] S. Ghotekar, A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications, Asian Journal of Green Chemistry, 3 (2019) 187-200.
[10] H.N. Cuong, S. Pansambal, S. Ghotekar, R. Oza, N.T.T. Hai, N.M. Viet, V.-H. Nguyen, New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review, Environmental Research, (2021) 111858.
[11] Y.P. Yew, K. Shameli, M. Miyake, N.B.B.A. Khairudin, S.E.B. Mohamad, T. Naiki, K.X. Lee, Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review, Arabian Journal of Chemistry, 13 (2020) 2287-2308.
[12] H. Dabhane, S. Ghotekar, P. Tambade, S. Pansambal, H.A. Murthy, R. Oza, V. Medhane, A review on environmentally benevolent synthesis of CdS nanoparticle and their applications, Environmental Chemistry and Ecotoxicology, (2021).
[13] T. Pagar, S. Ghotekar, K. Pagar, S. Pansambal, R. Oza, A Review on Bio-Synthesized Co3O4 Nanoparticles Using Plant Extracts and their Diverse Applications, Journal of Chemical Reviews, 1 (2019) 260-270.
[14] H. Dabhane, S. Ghotekar, P. Tambade, V. Medhane, Plant mediated green synthesis of lanthanum oxide (La2O3) nanoparticles: A review, Asian Journal of Nanosciences and Materials, 3 (2020) 291-299.
[15] M. Bandeira, M. Giovanela, M. Roesch-Ely, D.M. Devine, J. da Silva Crespo, Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation, Sustainable Chemistry and Pharmacy, 15 (2020) 100223.
[16] A. Nikam, T. Pagar, S. Ghotekar, K. Pagar, S. Pansambal, A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications, Journal of chemical reviews, 1 (2019) 154-163.
[17] P. Korde, S. Ghotekar, T. Pagar, S. Pansambal, R. Oza, D. Mane, Plant extract assisted eco-benevolent synthesis of selenium nanoparticles-a review on plant parts involved, characterization and their recent applications, Journal of Chemical Reviews, 2 (2020) 157-168.
[18] A.C. Paiva-Santos, A.M. Herdade, C. Guerra, D. Peixoto, M. Pereira-Silva, M. Zeinali, F. Mascarenhas-Melo, A. Paranhos, F. Veiga, Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications, International Journal of Pharmaceutics, (2021) 120311.
[19] S. AlNadhari, N.M. Al-Enazi, F. Alshehrei, F. Ameen, A review on biogenic synthesis of metal nanoparticles using marine algae and its applications, Environmental Research, 194 (2021) 110672.
[20] A. Santhosh, V. Theertha, P. Prakash, S.S. Chandran, From waste to a value added product: Green synthesis of silver nanoparticles from onion peels together with its diverse applications, Materials Today: Proceedings, 46 (2021) 4460-4463.
[21] H. Dabhane, S.K. Ghotekar, P.J. Tambade, S. Pansambal, H. Ananda Murthy, R. Oza, V. Medhane, Cow Urine Mediated Green Synthesis of Nanomaterial and Their Applications: A State-of-the-art Review, Journal of Water and Environmental Nanotechnology, 6 (2021) 81-91.
[22] S. Ibrahim, Z. Ahmad, M.Z. Manzoor, M. Mujahid, Z. Faheem, A. Adnan, Optimization for biogenic microbial synthesis of silver nanoparticles through response surface methodology, characterization, their antimicrobial, antioxidant, and catalytic potential, Scientific Reports, 11 (2021) 1-18.
[23] V. Soni, P. Raizada, P. Singh, H.N. Cuong, S. Rangabhashiyam, A. Saini, R.V. Saini, Q. Van Le, A.K. Nadda, T.-T. Le, Sustainable and green trends in using plant extracts for the synthesis of biogenic metal nanoparticles toward environmental and pharmaceutical advances: A review, Environmental Research, (2021) 111622.
[24] M. Nasrollahzadeh, M. Sajjadi, J. Dadashi, H. Ghafuri, Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities, Advances in colloid and interface science, 276 (2020) 102103.
[25] A.M. Partila, Bioproduction of silver nanoparticles and its potential applications in agriculture, in: Nanotechnology for Agriculture, Springer, 2019, pp. 19-36.
[26] S.P. Singh, C. Bhargava, V. Dubey, A. Mishra, Y. Singh, Silver nanoparticles: Biomedical applications, toxicity, and safety issues, International Journal of Research in Pharmacy and Pharmaceutical Sciences, 4 (2017) 01-10.
[27] M. A Bhosale, B. M Bhanage, Silver nanoparticles: Synthesis, characterization and their application as a sustainable catalyst for organic transformations, Current Organic Chemistry, 19 (2015) 708-727.
[28] F. Göl, A. Aygün, A. Seyrankaya, T. Gür, C. Yenikaya, F. Şen, Green synthesis and characterization of Camellia sinensis mediated silver nanoparticles for antibacterial ceramic applications, Materials Chemistry and Physics, 250 (2020) 123037.
[29] S. Ghotekar, K. Pagar, S. Pansambal, H.A. Murthy, R. Oza, Biosynthesis of silver sulfide nanoparticle and its applications, in: Handbook of Greener Synthesis of Nanomaterials and Compounds, Elsevier, 2021, pp. 191-200.
[30] N. Durán, G. Nakazato, A.B. Seabra, Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments, Applied microbiology and biotechnology, 100 (2016) 6555-6570.
[31] S. Marimuthu, A.J. Antonisamy, S. Malayandi, K. Rajendran, P.-C. Tsai, A. Pugazhendhi, V.K. Ponnusamy, Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity, Journal of Photochemistry and Photobiology B: Biology, 205 (2020) 111823.
[32] C.K. Tagad, S.R. Dugasani, R. Aiyer, S. Park, A. Kulkarni, S. Sabharwal, Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor, Sensors and Actuators B: Chemical, 183 (2013) 144-149.
[33] R.K. Sharma, S. Yadav, S. Dutta, H.B. Kale, I.R. Warkad, R. Zbořil, R.S. Varma, M.B. Gawande, Silver nanomaterials: synthesis and (electro/photo) catalytic applications, Chemical Society Reviews, (2021).
[34] J. Yang, J. Pan, Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis, Acta Materialia, 60 (2012) 4753-4758.
[35] B.M. Al-Shehri, M. Shkir, T.M. Bawazeer, S. AlFaify, M.S. Hamdy, A rapid microwave synthesis of Ag2S nanoparticles and their photocatalytic performance under UV and visible light illumination for water treatment applications, Physica E: Low-dimensional Systems and Nanostructures, 121 (2020) 114060.
[36] P.J. Babu, M. Doble, A.M. Raichur, Silver oxide nanoparticles embedded silk fibroin spuns: Microwave mediated preparation, characterization and their synergistic wound healing and anti-bacterial activity, Journal of colloid and interface science, 513 (2018) 62-71.
[37] M. Shahjahan, H. Rahman, M.S. Hossain, M.A. Khatun, A. Islam, M.H.A. Begum, Synthesis and characterization of silver nanoparticles by sol-gel technique, Nanosci. Nanometrol, 3 (2017) 34-39.
[38] S.M. Hosseinpour-Mashkani, M. Ramezani, Silver and silver oxide nanoparticles: Synthesis and characterization by thermal decomposition, Materials Letters, 130 (2014) 259-262.
[39] S. Ghotekar, S. Pansambal, S.P. Pawar, T. Pagar, R. Oza, S. Bangale, Biological activities of biogenically synthesized fluorescent silver nanoparticles using Acanthospermum hispidum leaves extract, SN Applied Sciences, 1 (2019) 1-12.
[40] S. Bangale, S. Ghotekar, Bio-fabrication of Silver nanoparticles using Rosa Chinensis L. extract for antibacterial activities, International Journal of Nano Dimension, 10 (2019) 217-224.
[41] S. Ghotekar, A. Savale, S. Pansambal, Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities, Journal of Water and Environmental Nanotechnology, 3 (2018) 95-105.
[42] B. Rashmi, S.F. Harlapur, B. Avinash, C. Ravikumar, H. Nagaswarupa, M.A. Kumar, K. Gurushantha, M. Santosh, Facile green synthesis of silver oxide nanoparticles and their electrochemical, photocatalytic and biological studies, Inorganic Chemistry Communications, 111 (2020) 107580.
[43] J.K. Patra, K.-H. Baek, Green synthesis of silver chloride nanoparticles using Prunus persica L. outer peel extract and investigation of antibacterial, anticandidal, antioxidant potential, Green Chemistry Letters and Reviews, 9 (2016) 132-142.
[44] D. Ayodhya, G. Veerabhadram, Green synthesis, characterization, photocatalytic, fluorescence and antimicrobial activities of Cochlospermum gossypium capped Ag2S nanoparticles, Journal of Photochemistry and Photobiology B: Biology, 157 (2016) 57-69.
[45] A. Badawy, R. Zayed, S. Ahmed, H. Hassanean, Phytochemical and pharmacological studies of Solanum elaeagnifolium growing in Egypt, Journal of Natural Products, 6 (2013) 156-167.
[46] F.A. Elabbar, N.M. Bozkeha, A.T. El-Tuonsia, Extraction, separation and identification of compounds from leaves of Solanum elaeagnifolium Cav.(Solanaceae), International Current Pharmaceutical Journal, 3 (2014) 234-239.
[47] M.A. Balah, G.M. AbdelRazek, Pesticidal activity of Solanum elaeagnifolium Cav. Leaves against nematodes and perennial weeds, Acta Ecologica Sinica, 40 (2020) 373-379.
[48] A.B. Hamouda, K. Zarrad, A. Laarif, I. Chaieb, Insecticidal effect of Solanum elaeagnifolium extracts under laboratory conditions, Journal of Entomology and Zoology Studies, 3 (2015) 187-190.
[49] R. Gonzalez, J. Tarloff, Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity, Toxicology in vitro, 15 (2001) 257-259.
[50] T. Sangeethaa, S. Mohanapriyab, N. Bhuvaneswaric, Synthesis, characterization and biological evaluation of heterocyclic triazole derived Schiff base ligands comprising Mn (II) complexes: Implications of their DNA/protein binding docking and anticancer activity studies, (2021).
[51] D. Rehana, D. Mahendiran, R.S. Kumar, A.K. Rahiman, Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts, Biomedicine & Pharmacotherapy, 89 (2017) 1067-1077.
[52] P. Jain, R. Agrawal, Antioxidant and free radical scavenging properties of developed mono-and polyherbal formulations, Asian J. Exp. Sci, 22 (2008) 213-220.
[53] N. Jamila, N. Khan, N. Bibi, M. Waqas, S.N. Khan, A. Atlas, F. Amin, F. Khan, M. Saba, Hg (II) sensing, catalytic, antioxidant, antimicrobial, and anticancer potential of Garcinia mangostana and α-mangostin mediated silver nanoparticles, Chemosphere, 272 (2021) 129794.
[54] F. Gulbagca, A. Aygün, M. Gülcan, S. Ozdemir, S. Gonca, F. Şen, Green synthesis of palladium nanoparticles: Preparation, characterization, and investigation of antioxidant, antimicrobial, anticancer, and DNA cleavage activities, Applied Organometallic Chemistry, (2021) e6272.
[55] B. Gauri, K. Vidya, D. Sharada, W. Shobha, Synthesis and characterization of Ag/AgO nanoparticles as alcohol sensor, Res J Chem Environ, 20 (2016) 1-5.
[56] T. Varthini, G. Carmel Vijila, M. Jothi, Effect of Medicinal Leaf Extract In Silver Nitrate-Size Reduction To Nanoscale, J Emerg Tech Innov Res, 5 (2018) 664-666.
[57] A. Ziashahabi, M. Prato, Z. Dang, R. Poursalehi, N. Naseri, The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark, Scientific reports, 9 (2019) 1-12.
[58] H. Yang, Y.-y. Ren, T. Wang, C. Wang, Preparation and antibacterial activities of Ag/Ag+/Ag3+ nanoparticle composites made by pomegranate (Punica granatum) rind extract, Results in physics, 6 (2016) 299-304.
[59] G.I. Waterhouse, G.A. Bowmaker, J.B. Metson, The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study, Physical Chemistry Chemical Physics, 3 (2001) 3838-3845.
[60] S.B. Aziz, R.T. Abdulwahid, M.A. Rasheed, O.G. Abdullah, H.M. Ahmed, Polymer blending as a novel approach for tuning the SPR peaks of silver nanoparticles, Polymers, 9 (2017) 486.
[61] P. Basnet, T.I. Chanu, D. Samanta, S. Chatterjee, A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents, Journal of Photochemistry and Photobiology B: Biology, 183 (2018) 201-221.
[62] I. Masterova, J. Tomko, Isolation and identification of alkaloids from Frítillaria imperíalis L. var. rubra maxima, Chem. zvesti, 32 (1978) 116-119.
[63] T. Durak, J. Depciuch, Effect of plant sample preparation and measuring methods on ATR-FTIR spectra results, Environmental and Experimental Botany, 169 (2020) 103915.
[64] K. Velsankar, S. Sudhahar, G. Parvathy, R. Kaliammal, Effect of cytotoxicity and aAntibacterial activity of biosynthesis of ZnO hexagonal shaped nanoparticles by Echinochloa frumentacea grains extract as a reducing agent, Materials Chemistry and Physics, 239 (2020) 121976.
[65] P. Basnet, D. Samanta, T.I. Chanu, J. Mukherjee, S. Chatterjee, Tea-phytochemicals functionalized Ag modified ZnO nanocomposites for visible light driven photocatalytic removal of organic water pollutants, Materials Research Express, 6 (2019) 085095.
[66] W.M. Shume, H. Murthy, E.A. Zereffa, A review on synthesis and characterization of Ag2O nanoparticles for photocatalytic applications, Journal of Chemistry, 2020 (2020).
[67] A. Dolgonos, T.O. Mason, K.R. Poeppelmeier, Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method, Journal of solid state chemistry, 240 (2016) 43-48.
[68] T.-H. Lin, T.-T. Chen, C.-L. Cheng, H.-Y. Lin, Y.-F. Chen, Selectively enhanced band gap emission in ZnO/Ag 2 O nanocomposites, Optics express, 17 (2009) 4342-4347.