1. Statistics, O.f.N., The prevalence of long COVID symptoms and COVID-19 complications. 2020.
2. Thompson, E.J., et al., Risk factors for long COVID: analyses of 10 longitudinal studies and electronic health records in the UK. medRxiv, 2021.
3. Logue, J.K., et al., Sequelae in adults at 6 months after COVID-19 infection. JAMA network open, 2021. 4(2): p. e210830-e210830.
4. Petersen, M.S., et al., Long COVID in the Faroe Islands-a longitudinal study among non-hospitalized patients. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 2020.
5. Hickie, I., et al., Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ, 2006. 333(7568): p. 575.
6. Moldofsky, H. and J. Patcai, Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC neurology, 2011. 11: p. 37-37.
7. Ahmed, H., et al., Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J Rehabil Med, 2020. 52(5): p. jrm00063.
8. Sudre, C.H., et al., Attributes and predictors of long COVID. Nature medicine, 2021. 27(4): p. 626-631.
9. Nabavi, N., Long covid: How to define it and how to manage it. 2020, British Medical Journal Publishing Group.
10. Nalbandian, A., et al., Post-acute COVID-19 syndrome. Nature medicine, 2021. 27(4): p. 601-615.
11. Woloshin, S., N. Patel, and A.S. Kesselheim, False Negative Tests for SARS-CoV-2 Infection — Challenges and Implications. New England Journal of Medicine, 2020. 383(6): p. e38.
12. La Marca, A., et al., Testing for SARS-CoV-2 (COVID-19): a systematic review and clinical guide to molecular and serological in-vitro diagnostic assays. Reproductive biomedicine online, 2020.
13. Ameratunga, R., et al., Perspective: diagnostic laboratories should urgently develop T cell assays for SARS-CoV-2 infection. Expert Review of Clinical Immunology, 2021. 17(5): p. 421-430.
14. Long, Q.-X., et al., Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nature Medicine, 2020. 26(8): p. 1200-1204.
15. Ibarrondo, F.J., et al., Rapid decay of anti–SARS-CoV-2 antibodies in persons with mild Covid-19. New England Journal of Medicine, 2020. 383(11): p. 1085-1087.
16. Fergie, J. and A. Srivastava, Immunity to SARS-CoV-2: Lessons Learned. Frontiers in immunology, 2021. 12: p. 654165-654165.
17. Tan, W., et al., Viral Kinetics and Antibody Responses in Patients with COVID-19. medRxiv, 2020: p. 2020.03.24.20042382.
18. Bonifacius, A., et al., COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. Immunity, 2021. 54(2): p. 340-354.e6.
19. Wu, F., et al., Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv, 2020: p. 2020.03.30.20047365.
20. Cox, R.J. and K.A. Brokstad, Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nature Reviews Immunology, 2020. 20(10): p. 581-582.
21. Seow, J., et al., Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nature microbiology, 2020. 5(12): p. 1598-1607.
22. Pai, M., et al., Gamma interferon release assays for detection of Mycobacterium tuberculosis infection. Clinical microbiology reviews, 2014. 27(1): p. 3-20.
23. Tan, W., et al., Viral kinetics and antibody responses in patients with COVID-19. MedRxiv, 2020.
24. Sekine, T., et al., Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell, 2020. 183(1): p. 158-168. e14.
25. Sherina, N., et al., Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6-8 months after the infection. Med (N Y), 2021. 2(3): p. 281-295.e4.
26. Grifoni, A., et al., Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell, 2020. 181(7): p. 1489-1501. e15.
27. Scurr, M.J., et al., Whole blood-based measurement of SARS-CoV-2-specific T cell responses reveals asymptomatic infection and vaccine efficacy in healthy subjects and patients with solid organ cancers. medRxiv, 2021: p. 2021.06.02.21258218.
28. Zuo, J., et al., Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection. Nature immunology, 2021. 22(5): p. 620-626.
29. Peng, Y., et al., Broad and strong memory CD4+ and CD8+ T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nature immunology, 2020. 21(11): p. 1336-1345.
30. Hou, H., et al., Immunological memory to SARS-CoV-2 in convalescent COVID-19 patients at one-year post-infection. Journal of Allergy and Clinical Immunology, 2021.
31. Petrone, L., et al., A whole blood test to measure SARS-CoV-2-specific response in COVID-19 patients. Clinical Microbiology and Infection, 2021. 27(2): p. 286. e7-286. e13.
32. Fergie, J. and A. Srivastava, Immunity to SARS-CoV-2: Lessons Learned. Frontiers in Immunology, 2021. 12: p. 716.
33. Tang, F., et al., Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. The Journal of Immunology, 2011. 186(12): p. 7264-7268.
34. Liu, W.J., et al., T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral research, 2017. 137: p. 82-92.
35. Li, C.K.-f., et al., T cell responses to whole SARS coronavirus in humans. The Journal of Immunology, 2008. 181(8): p. 5490-5500.
36. Oh, H.-L.J., et al., Engineering T cells specific for a dominant severe acute respiratory syndrome coronavirus CD8 T cell epitope. Journal of virology, 2011. 85(20): p. 10464-10471.
37. Da Guan, W., et al., Characteristics of traveler with Middle East respiratory syndrome, China, 2015. Emerging infectious diseases, 2015. 21(12): p. 2278.
38. Ng, O.-W., et al., Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine, 2016. 34(17): p. 2008-2014.
39. Scherlinger, M., et al., Refining “Long-COVID” by a Prospective Multimodal Evaluation of Patients with Long-Term Symptoms Attributed to SARS-CoV-2 Infection. Infectious Diseases and Therapy, 2021: p. 1-17.
40. Bacher, P., et al., Low-avidity CD4+ T cell responses to SARS-CoV-2 in unexposed individuals and humans with severe COVID-19. Immunity, 2020. 53(6): p. 1258-1271. e5.
41. Doshi, P., Covid-19: Do many people have pre-existing immunity? Bmj, 2020. 370.
42. Steiner, S., et al., HCoV-and SARS-CoV-2 cross-reactive T cells in CVID patients. Frontiers in immunology, 2020. 11.
43. Mateus, J., et al., Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science, 2020. 370(6512): p. 89-94.
44. Lipsitch, M., et al., Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nature Reviews Immunology, 2020. 20(11): p. 709-713.
45. Groves, H., et al., The impact of the COVID-19 pandemic on influenza, respiratory syncytial virus, and other seasonal respiratory virus circulation in Canada. medRxiv, 2021: p. 2021.04.15.21255591.
46. Kared, H., et al., SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals. The Journal of clinical investigation, 2021. 131(5): p. e145476.
47. Takagi, A. and M. Matsui, Identification of HLA-A*02:01-restricted candidate epitopes derived from the non-structural polyprotein 1a of SARS-CoV-2 that may be natural targets of CD8(+) T cell recognition in vivo. Journal of virology, 2020. 95(5): p. e01837-20.
48. Bergamaschi, L., et al., Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease. Immunity, 2021. 54(6): p. 1257-1275.e8.
49. Xiong, X., et al., A thermostable, closed SARS-CoV-2 spike protein trimer. Nature structural & molecular biology, 2020. 27(10): p. 934-941.
50. Stadlbauer, D., et al., SARS‐CoV‐2 seroconversion in humans: a detailed protocol for a serological assay, antigen production, and test setup. Current protocols in microbiology, 2020. 57(1): p. e100.
51. Collier, D.A., et al., Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature, 2021: p. 1-9.
52. Thompson, J.D., T.J. Gibson, and D.G. Higgins, Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics, 2003(1): p. 2.3. 1-2.3. 22.
53. Okonechnikov, K., et al., Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics, 2012. 28(8): p. 1166-1167.