Study design, sample size and population
The analytical cross-sectional study design was carried out, and rheumatic in-patients were consecutively recruited considering individual classification criteria from the rheumatism departments in four hospitals from May 2017 to August 2018. We also contemporarily recruited healthy subjects who were free from rheumatic diseases and selected randomly from applicants for health checks in the same hospital. The ethical approval was obtained from the Ethics Committee of the Third Affiliated Hospital, Sun Yat-sen University, and all participants provided informed consent for publication of their clinical details. Patients who were diagnosed with (1) rheumatoid arthritis (RA); (2) osteoarthritis (OA); (3) systemic lupus erythematosus (SLE); (4) systemic sclerosis (SSc); (5) ankylosing spondylosis (AS); (6) primary Sjogren syndrome (pSS); (7) gout; (8) mixed connective tissue disease (MCTD) ; we also excluded (1) pregnant; (3) with malignant tumor and/or receiving chemotherapy; (4) aged under 18; (5) refusing to write informed consent. A systematic sampling design was used to select the participants. The sample sizes were estimated by PASS 15 software (https://www.ncss.com), with the statistical power (1-β) set 0.90, type I error (α) set 0.05 and assuming that the prevalence of complicating with OP was 35% among rheumatic patients and 20%26 among healthy controls. The software calculated that a total sample size of at least 1653 would suffice. To ensure adequate events of each group, we finally recruited 1398 patients and 302 healthy controls (HC), totally 1700 participants for this study.
Data collection, procedures, and tools
A standardized five-part questionnaire was designed to collect data. The first part of this questionnaire contained demographic information such as age, gender, height, weight, menopausal status, etc. The second part focused on medical history, diabetes mellitus (type 2), hypertension (primary or secondary), dyslipidemia and hyperuricemia. Part three consisted of the patient’s lifestyle habits including drinking and smoking and medication history. All variables in part two were dichotomous except conventional disease-modifying antirheumatic drugs (cDMARDs), which was an ordinal one; and part four of the questionnaire consisted of biochemical examinations. Detailed results of BMD test were recorded in the last part of the questionnaire.
The procedures of collection were in two steps. Participants filled in the first part of the questionnaire after admission. The other parts were completed by the trained physician according to the patients’ medical records or the HC reports after the patient had finished the blood test and BMD test at the same hospital.
Blood samples and DXA tests
Blood samples were analyzed by standard laboratory techniques at the participating hospitals. Fresh blood samples were collected from each patient after the patient had been admitted, included detailed concentrations of blood calcium, serum phosphate, serum 25(OH)D3, serum creatine (sCr) and serum uric acid (sUA), c-reactive protein level (CRP), erythrocyte sedimentation rate (ESR) and plasm complement component 4 (C4) . Blood lipid examination was also performed with no detail showing in our study but finally diagnosis.
Statistics After the blood samples had been taken, the patients were taken to the nuclear medicine department for bone mass density then assessed by dual-energy X-ray absorptiometry (DXA; Hologic Discovery A densitometer, Badford, MA, USA) at the lumbar spine L2~ L4(anterior-posterior view), femoral neck and total hip.
Definitions
Body mass index (BMI) was calculated by dividing body weight by the square of height in meters (kg/m2). According to the definition of by WHO, BMI was categorized as underweight, normal, overweight and obese in the Chinese population when the individual had a BMI of <18.5, ≥18.5 – <24, and ≥24 – <28, ≥28 respectively27 28. Cigarette and alcohol consumption was further described as former/current smokers and non-smokers; regular or never/seldom drinking.
Meditation history of participants defined as follow: (1) those who have consecutively taken orally or took GC ≥3 months18 in the last one year before the day of BMD examination were ‘former or current chronic therapy of oral GC’; (2) those who had a history of consecutively taking cDMARDs ≥1 months, or used biological DMARDs (bDAMRDs) in the last one year were cDMARDs and/or bDMARDs users; (3) those has regularly taken NSAIDs ≥1 month was ‘NSAIDs user’.
BMD was expressed in standard deviation (SD) from the mean of healthy age- and sex-matched people (the Z-score) and as the number of SD from the mean of healthy, young sex-matched people (the T-score). All procedures were performed in accordance with the manufacturer’s standardized analysis software for hip and spine BMD measurements. T-score is recommended for males ≥50-year-old and postmenopausal women, but Z-score is preferable for males < 50-year-old and premenopausal women. Corresponding T-score or Z-score of each detective site was evaluated separately, but the lowest value of BMD in these measured sites was used. Final results met the WHO classification29 and the 2005 International Society for Clinical Densitometry (ISCD) 30 official positions.
Data processing and statistical analysis
Data were entered into Microsoft Office Excel (version 2016), and then two of the physicians rechecked and transferred this data to the R software (version 3.6.1) for analysis. Descriptive statistics for continuous variables included means and standard deviation (with normal distribution) and medians and interquartile ranges (with non-normal distribution), while categorical variables are presented as frequency and percentage. Group comparisons between the rheumatic patients and the healthy subjects were performed by Student’s two-tailed t-test for normally distributed continuous variables and Kruskal-Wallis H test for non-normally distributed ones. Pearson’s chi-square test or Fisher’s exact test was performed for categorical variables and Cochran-Armitage trend test for ordinal variables as appropriate. To determine the association between impaired BMD and rheumatic diseases and potential risk factors, we conducted logistic regression analyses to calculate the odds ratios (OR) and corresponding 95% confidence intervals (95% CI). A P-value < 0.05 was considered statistically significant. No imputations of missing values were performed. Comparison analyses were carried out by using R-3.6.1 for windows, package ‘compareGroups’ version 4.131.