Afzaal, M., Saeed, F., Arshad, M. U., Nadeem, M. T., Saeed, M., & Tufail, T. (2019). The effect of encapsulation on the stability of probiotic bacteria in ice cream and simulated gastrointestinal conditions. Probiotics and Antimicrobial Proteins, 11(4), 1348–1354. https://doi.org/10.1007/s12602-018-9485-9
Aoudia, N., Rieu, A., Briandet, R., Deschamps, J., Chluba, J., Jego, G., Garrido, C., & Guzzo, J. (2016). Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiology, 53, 51–59. https://doi.org/10.1016/j.fm.2015.04.009
Burgain, J., Gaiani, C., Linder, M., & Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 104(4), 467–483. https://doi.org/10.1016/j.jfoodeng.2010.12.031
Chen, Q., Sa, R., Jia, J., & Xu, R. (2017). Research on biofilm formation ability of lactic acid bacteria under different conditions. Advance Journal of Food Science and Technology, 13(2), 77–82. https://doi.org/10.19026/AJFST.13.3769
Cheow, W. S., & Hadinoto, K. (2013). Biofilm-like Lactobacillus rhamnosus probiotics encapsulated in alginate and carrageenan microcapsules exhibiting enhanced thermotolerance and freeze-drying resistance. Biomacromolecules, 14(9), 3214–3222. https://doi.org/10.1021/bm400853d
Coenye, T., Kjellerup, B., Stoodley, P., & Bjarnsholt, T. (2020). The future of biofilm research–Report on the ‘2019 Biofilm Bash.’ Biofilm, 2, 100012. https://doi.org/10.1016/j.bioflm.2019.100012
de Vos, P., Faas, M. M., Spasojevic, M., & Sikkema, J. (2010). Encapsulation for preservation of functionality and targeted delivery of bioactive food components. International Dairy Journal, 20(4), 292–302.
Diriba, K., Kassa, T., Alemu, Y., & Bekele, S. (2020). In Vitro Biofilm Formation and Antibiotic Susceptibility Patterns of Bacteria from Suspected External Eye Infected Patients Attending Ophthalmology Clinic, Southwest Ethiopia. International Journal of Microbiology, 2020.
Domagała, J. (2009). Instrumental texture, syneresis and microstructure of yoghurts prepared from goat, cow and sheep milk. International Journal of Food Properties, 12(3), 605–615. https://doi.org/10.1080/10942910801992934
Donlan, R. M. (2002). Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881.
Dufour, D., Leung, V., & Lévesque, C. M. (2010). Bacterial biofilm: structure, function, and antimicrobial resistance. Endodontic Topics, 22(1), 2–16.
Gebara, C., Chaves, K. S., Ribeiro, M. C. E., Souza, F. N., Grosso, C. R. F., & Gigante, M. L. (2013). Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Research International, 51(2), 872–878. https://doi.org/10.1016/j.foodres.2013.02.008
Gómez, N. C., Ramiro, J. M. P., Quecan, B. X. V, & de Melo Franco, B. D. G. (2016). Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157: H7 biofilms formation. Frontiers in Microbiology, 7, 863. https://doi.org/10.3389/fmicb.2016.00863
González-Ferrero, C., Irache, J. M., & González-Navarro, C. J. (2018). Soybean protein-based microparticles for oral delivery of probiotics with improved stability during storage and gut resistance. Food Chemistry, 239, 879–888.
Grossova, M., Rysavka, P., & Marova, I. (2017). Probiotic biofilm on carrier surface: A novel promising application for food industry. Acta Alimentaria, 46(4), 439–448.
Hobley, L., Harkins, C., MacPhee, C. E., & Stanley-Wall, N. R. (2015). Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiology Reviews, 39(5), 649–669.
Holkem, A. T., Raddatz, G. C., Barin, J. S., Flores, É. M. M., Muller, E. I., Codevilla, C. F., Jacob-Lopes, E., Grosso, C. R. F., & de Menezes, C. R. (2017). Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT-Food Science and Technology, 76, 216–221. https://doi.org/10.1016/j.lwt.2016.07.013
Hou, J., Wang, C., Rozenbaum, R. T., Gusnaniar, N., de Jong, E. D., Woudstra, W., Geertsema-Doornbusch, G. I., Atema-Smit, J., Sjollema, J., & Ren, Y. (2019). Bacterial density and biofilm structure determined by optical coherence tomography. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-46196-7
Hu, M.-X., Li, J.-N., Guo, Q., Zhu, Y.-Q., & Niu, H.-M. (2019). Probiotics biofilm-integrated electrospun nanofiber membranes: a new starter culture for fermented milk production. Journal of Agricultural and Food Chemistry, 67(11), 3198–3208. https://doi.org/10.1021/acs.jafc.8b05024
Huq, T., Fraschini, C., Khan, A., Riedl, B., Bouchard, J., & Lacroix, M. (2017). Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydrate Polymers, 168, 61–69. https://doi.org/10.1016/j.carbpol.2017.03.032
Iravani, S., Korbekandi, H., & Mirmohammadi, S. V. (2015). Technology and potential applications of probiotic encapsulation in fermented milk products. Journal of Food Science and Technology, 52(8), 4679–4696.
Irfan, A., Khan, M. A., Hassan, M. S., Zafaryab, M., & Ahmad, P. (2017). Cucurbit Extracts Augment Biofilm Formation by Probiotic Lactobacilli: An. Vitro. https://doi.org/10.4172/1948-5948.1000354
Jalilsood, T., Baradaran, A., Song, A. A.-L., Foo, H. L., Mustafa, S., Saad, W. Z., Yusoff, K., & Rahim, R. A. (2015). Inhibition of pathogenic and spoilage bacteria by a novel biofilm-forming Lactobacillus isolate: a potential host for the expression of heterologous proteins. Microbial Cell Factories, 14(1), 96. https://doi.org/10.1186/s12934-015-0283-8
Jones, S. E., & Versalovic, J. (2009). Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiology, 9(1), 1–9. https://doi.org/10.1186/1471-2180-9-35
Kokare, C. R., ChakraborBiofilm: Importance and applicationsty, S., Khopade, A. N., & Mahadik, K. R. (2009). Biofilm: Importance and applications.
Koohestani, M., Moradi, M., Tajik, H., & Badali, A. (2018). Effects of cell-free supernatant of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against planktonic form and biofilm of Staphylococcus aureus. Veterinary Research Forum, 9(4), 301. https://doi.org/10.30466/vrf.2018.33086
Kubota, H., Senda, S., Nomura, N., Tokuda, H., & Uchiyama, H. (2008). Biofilm formation by lactic acid bacteria and resistance to environmental stress. Journal of Bioscience and Bioengineering, 106(4), 381–386. https://doi.org/10.1263/jbb.106.381
Kubota, H., Senda, S., Tokuda, H., Uchiyama, H., & Nomura, N. (2009). Stress resistance of biofilm and planktonic Lactobacillus plantarum subsp. plantarum JCM 1149. Food Microbiology, 26(6), 592–597. https://doi.org/10.1016/j.fm.2009.04.001
Lee, W. J., & Lucey, J. A. (2010). Formation and physical properties of yogurt. Asian-Australasian Journal of Animal Sciences, 23(9), 1127–1136. https://doi.org/https://doi.org/10.5713/ajas.2010.r.05
Li, C., Song, J., Kwok, L., Wang, J., Dong, Y., Yu, H., Hou, Q., Zhang, H., & Chen, Y. (2017). Influence of Lactobacillus plantarum on yogurt fermentation properties and subsequent changes during postfermentation storage. Journal of Dairy Science, 100(4), 2512–2525. https://doi.org/10.3168/jds.2016-11864
Liao, N., Luo, B., Gao, J., Li, X., Zhao, Z., Zhang, Y., Ni, Y., & Tian, F. (2019). Oligosaccharides as co-encapsulating agents: effect on oral Lactobacillus fermentum survival in a simulated gastrointestinal tract. Biotechnology Letters, 41(2), 263–272. https://doi.org/10.1007/s10529-018-02634-6
Limoli, D. H., Jones, C. J., & Wozniak, D. J. (2015). Bacterial extracellular polysaccharides in biofilm formation and function. Microbial Biofilms, 223–247. https://doi.org/10.1128/microbiolspec.MB-0011-2014
Madureira, A. R., Amorim, M., Gomes, A. M., Pintado, M. E., & Malcata, F. X. (2011). Protective effect of whey cheese matrix on probiotic strains exposed to simulated gastrointestinal conditions. Food Research International, 44(1), 465–470. https://doi.org/10.1016/j.foodres.2010.09.010
Meshkani, M., Mortazavi, A., & Pourfallah, Z. (2013). Antimicrobial and physical properties of a chickpea protein isolate-based film containing essential oil of thyme using response surface methodology. Iranian Journal of Nutrition Sciences & Food Technology, 8(1), 93–104.
Mousavi, M., Heshmati, A., Daraei Garmakhany, A., Vahidinia, A., & Taheri, M. (2019). Texture and sensory characterization of functional yogurt supplemented with flaxseed during cold storage. Food Science & Nutrition, 7(3), 907–917. https://doi.org/10.1002/fsn3.805
O’Connell, H. A., Kottkamp, G. S., Eppelbaum, J. L., Stubblefield, B. A., Gilbert, S. E., & Gilbert, E. S. (2006). Influences of biofilm structure and antibiotic resistance mechanisms on indirect pathogenicity in a model polymicrobial biofilm. Applied and Environmental Microbiology, 72(7), 5013–5019. https://doi.org/10.1128/AEM.02474-05
Okuda, K., Nagahori, R., Yamada, S., Sugimoto, S., Sato, C., Sato, M., Iwase, T., Hashimoto, K., & Mizunoe, Y. (2018). The composition and structure of biofilms developed by Propionibacterium acnes isolated from cardiac pacemaker devices. Frontiers in Microbiology, 9, 182. https://doi.org/10.3389/fmicb.2018.00182
Pop, O. L., Dulf, F. V., Cuibus, L., Castro-Giráldez, M., Fito, P. J., Vodnar, D. C., Coman, C., Socaciu, C., & Suharoschi, R. (2017). Characterization of a sea buckthorn extract and its effect on free and encapsulated lactobacillus casei. International Journal of Molecular Sciences, 18(12), 2513. https://doi.org/10.3390/ijms18122513
Ramírez, M. D. F., Smid, E. J., Abee, T., & Groot, M. N. N. (2015). Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates. International Journal of Food Microbiology, 207, 23–29. https://doi.org/10.1016/j.ijfoodmicro.2015.04.030
Ramos, A. N., Sesto Cabral, M. E., Noseda, D., Bosch, A., Yantorno, O. M., & Valdez, J. C. (2012). Antipathogenic properties of L actobacillus plantarum on P seudomonas aeruginosa: the potential use of its supernatants in the treatment of infected chronic wounds. Wound Repair and Regeneration, 20(4), 552–562. https://doi.org/10.1111/j.1524-475X.2012.00798.x
Salas-Jara, M. J., Ilabaca, A., Vega, M., & García, A. (2016). Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms, 4(3), 35. https://doi.org/10.3390/microorganisms4030035
Singh, G., & Muthukumarappan, K. (2008). Influence of calcium fortification on sensory, physical and rheological characteristics of fruit yogurt. LWT-Food Science and Technology, 41(7), 1145–1152. https://doi.org/10.1016/j.lwt.2007.08.027
Sohail, A., Turner, M. S., Coombes, A., Bostrom, T., & Bhandari, B. (2011). Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. International Journal of Food Microbiology, 145(1), 162–168. https://doi.org/10.1016/j.ijfoodmicro.2010.12.007
Speranza, B., Liso, A., Russo, V., & Corbo, M. R. (2020). Evaluation of the Potential of Biofilm Formation of Bifidobacterium longum subsp. infantis and Lactobacillus reuteri as Competitive Biocontrol Agents Against Pathogenic and Food Spoilage Bacteria. Microorganisms, 8(2), 177. https://doi.org/10.3390/microorganisms8020177
Terraf, M C Leccese, Juárez Tomás, M. S., Nader‐Macías, M. E. F., & Silva, C. (2012). Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components. Journal of Applied Microbiology, 113(6), 1517–1529. https://doi.org/10.1111/j.1365-2672.2012.05429.x
Terraf, María Cecilia Leccese, Tomás, M. S. J., Rault, L., Le Loir, Y., Even, S., & Nader-Macías, M. E. F. (2016). Biofilms of vaginal Lactobacillus reuteri CRL 1324 and Lactobacillus rhamnosus CRL 1332: Kinetics of formation and matrix characterization. Archives of Microbiology, 198(7), 689–700. https://doi.org/10.1007/s00203-016-1225-5
Vu, B., Chen, M., Crawford, R. J., & Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14(7), 2535–2554. https://doi.org/10.3390/molecules14072535
Walstra, P., Walstra, P., Wouters, J. T. M., & Geurts, T. J. (2005). Dairy science and technology. CRC press.
Watson, R. R., & Preedy, V. R. (2015). Probiotics, prebiotics, and synbiotics: bioactive foods in health promotion. Academic Press.
Wehr, H. M., Frank, J. F., & Association, A. P. H. (2004). Standard methods for the examination of dairy products. American Public Health Association Washington, DC. https://doi.org/10.2105/9780875530024
Yangilar, F., & Yildiz, P. O. (2018). Effects of using combined essential oils on quality parameters of bio‐yogurt. Journal of Food Processing and Preservation, 42(1), e13332. https://doi.org/10.1111/jfpp.13332
Yao, M., Xie, J., Du, H., McClements, D. J., Xiao, H., & Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety, 19(2), 857–874.