In the course of clustering, we identified four basic groups, from which we highlighted the most relevant 18 topics.
We present the 18 topics according to the following four aspects: the number of publications in the cluster (the size of the topic), the distribution of the publications based on publication date, the citation impact of the publications, and the analysis of the journal rank of publications within each topic.
The 18 topics are the following:
1) Soccer and physiology
2) Carbohydrate metabolism
3) Muscle physiology: alkalosis and acidosis
4) Muscle mass gain and dietary supplementation
5) Fluid balance and hydration
6) Dietary intake and nutrition knowledge
7) Determination of energy need of athletes
8) Bone health, female athlete triad
9) Hydration strategy
10) Body weight management
11) Nutritional Strategies and human skeletal muscle
12) Dietary supplementation of nitrates
13) Oxidative stress and dietary supplement use
14) Dietary supplement use and doping
15) Oxidative stress, inflammation, and dietary antioxidants
16) Exercise adaptation and nutritional strategies
17) Gut microbiota
18) Celiac disease
Scientometric characteristics of topics
The size distribution of topics
Based on the absolute and relative size of the topics, that are based on the number of publications belonging to a cluster, we can get an insight into the significance of the explored topics and research trends in sport nutrition science. These data are displayed in Fig. 3., which, besides the number of publications in each cluster, also shows their composition in terms of the core publications identified through the targeted search as well as of the publications citing, and those cited by the core sample. In terms of weight (size), the most dominant topic, with ca. 300 publications, is muscle power enhancement and dietary supplementation, followed by topics with about 200-250 publications: ‘carbohydrate metabolism’, ‘oxidative stress and dietary supplement use’, ‘exercise adaptation and nutritional strategies’, ‘dietary supplementation of nitrates’, ‘nutritional strategies and human skeletal muscle’. This group is closely followed by the topic of ‘bone health, female athlete triad’, ‘dietary intake and nutrition knowledge’, and ‘determination of energy need of athletes’, with about 200 publications. The group with 100-150 publications is led by the topics of ‘fluid balance and hydration’, and ‘body weight management’, moreover, here belong the themes of ‘soccer and physiology’, also the ‘hydration strategy’, as well as ‘dietary supplement use and doping’. In the 50-100 range, the dominant topics with almost 100 publications are ‘muscle physiology: alkalosis and acidosis’, ‘oxidative stress, inflammation and dietary antioxidants’, also here belong the smaller but well-defined topics of ‘gut microbiota’ and ‘celiac disease’. The full size of the topics greatly correlates with their role and importance in the core sample; that is, size ranking also reflects the extent to which the cluster is of ‘sport physiological’ nature.
Chronological distribution of topics
The distribution by publication date of the publications belonging to the identified topics, or, to put it another way, the chronological distribution of each cluster facilitates the assessment of the trends and relevance of each topic, of their ‘popular’ or ‘winding down’ nature. The distribution of the size of the topics is summarized in Fig. 4., which shows the number of documents belonging to each topic starting from 2010. Based on this, the trend graphs in the table provide an overview of the chronological dynamics of the topics. The trend graphs attest that each topic shows a growing tendency (that is, more and more articles appeared on the given topic in the past decade), each cluster is at its maximum size in the last examined year (2018). The differences between the topics appear in the characteristics and pattern of the increase. According to the latter, with a little simplification, we observe two types of increase: (1) the topic increases gradually from the beginning or middle of the examined decade, (2) after a relative ‘stagnation’, the topic shows a rising slope in the last few years. Type (1), a gradual increase is the most characteristic of the topics ‘muscle physiology: alkalosis and acidosis’, ‘nutritional strategies and human skeletal muscle’, ‘exercise adaptation and nutritional strategies’. Type (2), sudden increase with a more moderate rising slope, spread over the last four-five years, appears in relation with the topics ‘soccer and physiology’, ‘energy intake and nutrition knowledge’, ‘nutritional strategies and human skeletal muscle’, ‘fluid balance and hydration’, ‘hydration strategy’, ‘oxidative stress and dietary supplement use’, ‘dietary supplement use and doping’, ‘oxidative stress, inflammation and dietary antioxidants’. In the case of topics with a Type (2) the slope is rising and normally peaking in the last two years, these are the following: ‘muscle power enhancement and dietary supplementation’, determination of ‘energy need of athletes’, ‘body weight management’, ‘gut microbiota’, and ‘celiac disease’. A ‘unique’ cluster, with a somewhat different pattern from the two basic types is the ‘carbohydrate metabolism’, which, along with some fluctuations, shows a steady output in the topic (also with a slight increase); another is ‘bone health and female athlete triad’, which also shows a steady output with a rising slope in the last examined year.
Citation impact of topics and journal ranks
Apart from chronological trends, the relevance and scientific significance of topics can be investigated through the use of the following two groups of scientometric indicators: (1) the citation measures (of the publications) of individual topics, and (2) the prestige or rank of publication venues, i.e., journals. Citation measures provide information about the scientific impact exerted by publications within a topic, considered as a fundamental proxy to the relevance of topics for sport nutrition science.
Instead of the raw citation number, correcting for the field- and age-related differences, publications are characterized by their position in the citation distribution within the particular research field, i.e. with the citation percentile. The clusters with the biggest impact are those whose average, that is, the characteristic value of the relevant articles is situated closest to 100. Those with a median above the value of 75 can be considered to have a high general citation impact (they belong to the most cited, 25%, citation quartile). Based on this, practically all the identified clusters fall into the high citation measure range, both in terms of their median and of the majority (minimum 50%) of their publications. The topics with the biggest impact are the ‘nutritional strategies and human skeletal muscle’ and ‘dietary supplementation of nitrates’. A similarly high composite impact is shown by the topics of ‘soccer and physiology’, ‘carbohydrate metabolism’, ‘bone health and female athlete triad’, ‘body weight management’, and ‘gut microbiota’ (Fig. 5).
The rank of publications, in this case, refers to the rank and recognition of the publishing journals, with the latter representing, in terms of the topics, the quality of knowledge transferred in them. To describe the rank and the quality of the knowledge content of topics, we applied the citation quartile system. The basis of the approach is the classification of publications into four quality classes according to the rank of the publishing journal. The so-called Q1 journals belong to the upper 25% of the journal rank of the field, Q2 journals belong to the upper 25-50% quartile, Q3 journals are in the lower 25-50%, and Q4, in the bottom 25%. Fig. 6. shows the distribution of the articles of the identified clusters among the four classes for each theme. In this case, also, we can state that almost all clusters include publications of high quality, inasmuch as on average, 50% of their publications are ranked Q1, and the majority of the rest of the publications belong to Q2, which can also be considered a satisfactory quality rank. ‘Carbohydrate metabolism’, ‘nutritional strategies and human skeletal muscle’, ‘dietary supplementation of nitrates’ stand out (Fig. 6).
In the next step of our methodological process, we applied the scientometric assessment of topics, for which we selected the four most significant topics and presented their internal structure in terms of key thematic relations based on our text mining and core document methodologies. We illustrated the conceptual network of topics with a dendrogram, and we analyzed the four topics based on their interconnections from the aspects of sport nutrition, sport physiology, type of sport, dietary supplements, and performance diagnostics. The collection of the 18 topics and their core papers are in additional file 1. Using an advanced bibliometric method, we obtained the so-called core papers for each research topic, the most representative publications in the cluster [see Additional file 1].
Description of the nutritional strategies and human skeletal muscle cluster
This topic focuses on the relationship between sport performance and the metabolic pathways of skeletal muscle cells. Its most frequent issue is the role of PGC-1 alpha transcriptional regulation especially in the relation to mitochondrial biogenesis, citrate synthesis, endurance performance, phosphocreatine as the creatine substrate of performance enhancement, the relation of insulin, free fatty acids and fatigue, protein and carbohydrates (first of all fructose), and also in relation to energy expenditure and regeneration. Depending on the type of the examined sport, endurance training stands out, but high-intensity interval training is also present with almost the same frequency. Of the biological components, the role of P38 MAPK protein kinase is worth emphasizing (Fig. 7).
Description of the dietary supplementation of nitrates topic
The complex (sport-) physiological focus of the topic is on the relation network of blood circulation, oxidative metabolism and nitrogen metabolism and supplementation (in relation to sport activities). Its primary topics are oxygen consumption (related to the concept of efficiency), fatigue, inorganic nitrate substrate related to vascular function, the stimulus-muscle contraction connection, vegetarianism, the enzyme that produces nitrogen oxide substrate, the relation network of hypertension and vasodilatation, inflammation and beta-alanine, and bloodstream. Depending on the type of physical activity, this topic is characterized by endurance training, especially, related to oxidative stress and its biomarkers. The concept of diving response also emerged mainly related to oxygen uptake and consumption and more slightly to respiratory control. Within further substrata, sodium nitrite and with lower frequency, creatine-nitrate appeared. Regarding indices, the use of the VO2 performance indicator was relevant (Fig. 8).
Description of the carbohydrate metabolism topic
From a sport physiological point of view, this topic also revolves around the improvement of skeletal muscle function, mainly in the relation to carbohydrate metabolism. Its pivotal concepts and issues are lipid oxidation during exercise metabolism processes, nitrogen balance (especially after eating), lean body mass (increase), aerobic capacity related mostly to fatigue and endurance training, glycemic index, muscle glycogen, and endurance training (and carbohydrate absorption). The latter is characteristic of the type of the examined sport and in the terms of branch of sport, cycling (timed training) and running emerged. In the case of the examined substrates, dietary supplements and biologically active components, the role of lipid oxidation (timed cycling), and - less frequently - catecholamine (running), sport drinks (cycling) and fructose (endurance training), and creatine kinase emerged (Fig. 9).
Description of the muscle mass gain and dietary supplementation topic
The central topics of this cluster are the factors of muscle mass gain and strengthening. The most important questions of these topics - that the studies focus on - are the association between muscle recovery and injuries, muscle strength, anaerobe threshold, anaerobe capacity, cardiorespiratory endurance, and lean body mass. Categorized by the type of sport exercise the two major topics are resistance exercise and high-intensity exercise related mostly to cardiorespiratory endurance. The topic of dietary supplement use is also significant in this cluster. Proteins are the most important and nitrogen oxides, nitrates and creatine are also considerable among the studies on substrates and dietary supplements that play an important role in muscle mass gain and performance enhancement. Carnosine and beta-alanine have a relatively smaller significance in this topic. In this cluster, electromyography is a frequent research method (Fig. 10).
Nutrients and substrates that appeared in the clusters
Among the macronutrients, proteins and carbohydrates appeared the most frequently in the topics. These two nutrients were studied according to their general role in nutrition and also as ergogenic nutrients in sport nutrition. The role of proteins and amino acids were assessed in the ‘muscle mass gain and dietary supplementation’ and the ‘oxidative stress, inflammation, and dietary antioxidants’ clusters. In the carbohydrate metabolism cluster - more specifically - glucose plays a major role in the ‘soccer and physiology’ and fructose in the ‘nutritional strategies’ and ‘skeletal muscle cell physiology’ clusters. Regarding further nutrients and substrates, beta-alanine, creatine, caffeine, nitrates, and sodium appears frequently in the analysed publications. The effect of beta-alanine was studied in the ‘muscle physiology: alkalosis and acidosis’, ‘exercise adaptation and nutritional strategies’ and the ‘muscle mass gain and dietary supplementation’ clusters. The role of nitrates was assessed in the ‘dietary supplementation of nitrates’ and in the ‘oxidative stress and dietary supplement use’ clusters. Besides the nitrates, caffeine was also analysed in these two latter clusters. Furthermore, the topic on the effect of caffeine had a major role in the ‘determination of energy need of athletes’ and ‘muscle physiology: alkalosis and acidosis’ clusters. The effect of creatine was studied in the ‘body weight management’, ‘muscle mass gain and dietary supplementation’ clusters. The pre- and probiotics were only assessed in the ‘gut microbiota’ cluster. The role of omega-3 fatty acids was analysed as stress and inflammatory marker in the ‘oxidative stress and dietary supplement use’ cluster (Table 1).
Table 1 Nutrients and substrates appeared in the clusters
Topic
|
Nutrients and substrates
|
soccer and physiology
|
carbohydrates, glucose, anthocyanin
|
carbohydrate metabolism
|
proteins, carbohydrates, glucose, fructose
|
muscle physiology: alkalosis and acidosis
|
sodium-bicarbonate, carnosine, caffeine, beta-alanine,
|
muscle mass gain and dietary supplementation
|
creatine, beta-alanine, proteins, amino acids,
|
fluid balance and hydration
|
carbohydrates, sodium-bicarbonate, proteins
|
dietary intake and nutrition knowledge
|
beta-alanine, proteins
|
determination of energy need of athletes
|
carbohydrates, proteins, caffeine
|
bone health, female athlete triad
|
calcium
|
hydration strategy
|
carbohydrates, sodium-bicarbonate
|
body weight management
|
proteins, creatine
|
nutritional strategies and human skeletal muscle
|
carbohydrates, proteins, sodium- bicarbonate, fructose
|
dietary supplementation of nitrates
|
dietary nitrates, beetroot juice, caffeine
|
oxidative stress and dietary supplement use
|
antioxidants, creatine, omega-3 fatty acids, vitamin E,
|
dietary supplement use and doping
|
creatine, caffeine, nitrate
|
oxidative stress, inflammation and dietary antioxidants
|
antioxidants, green tea, carnosine, beta-alanine, amino acids
|
exercise adaptation and nutritional strategies
|
carbohydrates, fats, beta-alanine
|
gut microbiota
|
protein, probiotics
|
celiac disease
|
creatine, sodium
|