1. WHO (2022). World Malaria Report 2022. World Health Organisation.
2. Price, R.N., Commons, R.J., Battle, K.E., Thriemer, K., and Mendis, K. (2020). Plasmodium vivax in the Era of the Shrinking P. falciparum Map. Trends Parasitol. 36, 560-570. https://doi.org/10.1016/j.pt.2020.03.009.
3. Phillips, M.A., Burrows, J.N., Manyando, C., van Huijsduijnen, R.H., Van Voorhis, W.C., and Wells, T.N.C. (2017). Malaria. Nat. Rev. Dis. Primers 3, 17050. https://doi.org/10.1038/nrdp.2017.50.
4. van der Pluijm, R.W., Imwong, M., Chau, N.H., Hoa, N.T., Thuy-Nhien, N.T., Thanh, N.V., Jittamala, P., Hanboonkunupakarn, B., Chutasmit, K., Saelow, C., et al. (2019). Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect. Dis. 19, 952-961. https://doi.org/10.1016/S1473-3099(19)30391-3.
5. Balikagala, B., Fukuda, N., Ikeda, M., Katuro, O.T., Tachibana, S.-I., Yamauchi, M., Opio, W., Emoto, S., Anywar, D.A., Kimura, E., et al. (2021). Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med. 385, 1163-1171. https://doi.org/10.1056/NEJMoa2101746.
6. Liu, J., Istvan, E.S., Gluzman, I.Y., Gross, J., and Goldberg, D.E. (2006). Plasmodium falciparum ensures its amino acid supply with multiple acquisition pathways and redundant proteolytic enzyme systems. Proc. Natl. Acad. Sci. U. S. A. 103, 8840-8845. https://doi.org/10.1073/pnas.0601876103.
7. Lew, V.L., Tiffert, T., and Ginsburg, H. (2003). Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum–infected red blood cells. Blood 101, 4189-4194. https://doi.org/10.1182/blood-2002-08-2654.
8. Krugliak, M., Zhang, J., and Ginsburg, H. (2002). Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol. Biochem. Parasitol. 119, 249-256. https://doi.org/10.1016/S0166-6851(01)00427-3.
9. Loria, P., Miller, S., Foley, M., and Tilley, L. (1999). Inhibition of the peroxidative degradation of haem as the basis of action of chloroquine and other quinoline antimalarials. Biochem. J. 339 363-370.
10. Goldberg, D.E. (2005). Hemoglobin degradation. In Malaria: Drugs, disease and post-genomic biology, R.W. Compans, M.D. Cooper, T. Honjo, H. Koprowski, F. Melchers, M.B.A. Oldstone, S. Olsnes, M. Potter, P.K. Vogt, H. Wagner, et al., eds. (Springer Berlin Heidelberg), pp. 275-291. https://doi.org/10.1007/3-540-29088-5_11.
11. Edgar, R.C.S., Siddiqui, G., Hjerrild, K., Malcolm, T.R., Vinh, N.B., Webb, C.T., Holmes, C., MacRaild, C.A., Chernih, H.C., Suen, W.W., et al. (2022). Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway. eLife 11, e80813. https://doi.org/10.7554/eLife.80813.
12. Dalal, S., and Klemba, M. (2007). Roles for two aminopeptidases in vacuolar hemoglobin catabolism in Plasmodium falciparum. J. Biol. Chem. 282, 35978-35987. https://doi.org/10.1074/jbc.M703643200.
13. Skinner-Adams, T.S., Lowther, J., Teuscher, F., Stack, C.M., Grembecka, J., Mucha, A., Kafarski, P., Trenholme, K.R., Dalton, J.P., and Gardiner, D.L. (2007). Identification of Phosphinate Dipeptide Analog Inhibitors Directed against the Plasmodium falciparum M17 Leucine Aminopeptidase as Lead Antimalarial Compounds. J. Med. Chem. 50, 6024-6031. https://doi.org/10.1021/jm070733v.
14. Skinner-Adams, T.S., Peatey, C.L., Anderson, K., Trenholme, K.R., Krige, D., Brown, C.L., Stack, C., Nsangou, D.M.M., Mathews, R.T., Thivierge, K., et al. (2012). The Aminopeptidase Inhibitor CHR-2863 Is an Orally Bioavailable Inhibitor of Murine Malaria. Antimicrob. Agents Chemother. 56, 3244-3249. https://doi.org/10.1128/AAC.06245-11.
15. Harbut, M.B., Velmourougane, G., Dalal, S., Reiss, G., Whisstock, J.C., Onder, O., Brisson, D., McGowan, S., Klemba, M., and Greenbaum, D.C. (2011). Bestatin-based chemical biology strategy reveals distinct roles for malaria M1- and M17-family aminopeptidases. Proc. Natl. Acad. Sci. U. S. A. 108, E526-534. https://doi.org/10.1073/pnas.1105601108.
16. McGowan, S. (2013). Working in concert: the metalloaminopeptidases from Plasmodium falciparum. Curr. Opin. Struct. Biol. 23, 828-835. https://doi.org/10.1016/j.sbi.2013.07.015.
17. Nankya-Kitaka, M.F., Curley, G.P., Gavigan, C.S., Bell, A., and Dalton, J.P. (1998). Plasmodium chabaudi chabaudi and P. falciparum : inhibition of aminopeptidase and parasite growth by bestatin and nitrobestatin. Parasitol. Res. 84, 552-558. https://doi.org/10.1007/s004360050447.
18. Bounaadja, L., Schmitt, M., Albrecht, S., Mouray, E., Tarnus, C., and Florent, I. (2017). Selective inhibition of PfA-M1, over PfA-M17, by an amino-benzosuberone derivative blocks malaria parasites development in vitro and in vivo. Malar. J. 16, 382. https://doi.org/10.1186/s12936-017-2032-4.
19. Deprez-Poulain, R., Flipo, M., Piveteau, C., Leroux, F., Dassonneville, S., Florent, I., Maes, L., Cos, P., and Deprez, B. (2012). Structure–Activity Relationships and Blood Distribution of Antiplasmodial Aminopeptidase-1 Inhibitors. J. Med. Chem. 55, 10909-10917. https://doi.org/10.1021/jm301506h.
20. Drinkwater, N., Vinh, N.B., Mistry, S.N., Bamert, R.S., Ruggeri, C., Holleran, J.P., Loganathan, S., Paiardini, A., Charman, S.A., Powell, A.K., et al. (2016). Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions. European Journal of Medicinal Chemistry 110, 43-64. https://doi.org/10.1016/j.ejmech.2016.01.015.
21. Vinh, N.B., Drinkwater, N., Malcolm, T.R., Kassiou, M., Lucantoni, L., Grin, P.M., Butler, G.S., Duffy, S., Overall, C.M., Avery, V.M., et al. (2019). Hydroxamic Acid Inhibitors Provide Cross-Species Inhibition of Plasmodium M1 and M17 Aminopeptidases. J. Med. Chem. 62, 622-640. https://doi.org/10.1021/acs.jmedchem.8b01310.
22. Gonzalez-Bacerio, J., Fando, R., Monte-Martinez, d.A., Charli, J.-L., and Chávez, d.l.A.M. (2014). Plasmodium falciparum M1-Aminopeptidase: A Promising Target for the Development of Antimalarials. Current Drug Targets 15, 1144-1165. http://dx.doi.org/10.2174/1389450115666141024115641.
23. Mistry, S.N., Drinkwater, N., Ruggeri, C., Sivaraman, K.K., Loganathan, S., Fletcher, S., Drag, M., Paiardini, A., Avery, V.M., Scammells, P.J., and McGowan, S. (2014). Two-Pronged Attack: Dual Inhibition of Plasmodium falciparum M1 and M17 Metalloaminopeptidases by a Novel Series of Hydroxamic Acid-Based Inhibitors. J. Med. Chem. 57, 9168-9183. https://doi.org/10.1021/jm501323a.
24. Ruggeri, C., Drinkwater, N., Sivaraman, K.K., Bamert, R.S., McGowan, S., and Paiardini, A. (2015). Identification and Validation of a Potent Dual Inhibitor of the P. falciparum M1 and M17 Aminopeptidases Using Virtual Screening. PLoS One 10, e0138957. https://doi.org/10.1371/journal.pone.0138957.
25. Kannan Sivaraman, K., Paiardini, A., Sieńczyk, M., Ruggeri, C., Oellig, C.A., Dalton, J.P., Scammells, P.J., Drag, M., and McGowan, S. (2013). Synthesis and Structure–Activity Relationships of Phosphonic Arginine Mimetics as Inhibitors of the M1 and M17 Aminopeptidases from Plasmodium falciparum. J. Med. Chem. 56, 5213-5217. https://doi.org/10.1021/jm4005972.
26. Allary, M., Schrevel, J., and Florent, I. (2002). Properties, stage-dependent expression and localization of Plasmodium falciparum M1 family zinc-aminopeptidase. Parasitology 125, 1-10. https://doi.org/10.1017/S0031182002001828.
27. Azimzadeh, O., Sow, C., Gèze, M., Nyalwidhe, J., and Florent, I. (2010). Plasmodium falciparum PfA-M1 aminopeptidase is trafficked via the parasitophorous vacuole and marginally delivered to the food vacuole. Malar. J. 9, 189. https://doi.org/10.1186/1475-2875-9-189.
28. Mathew, R., Wunderlich, J., Thivierge, K., Cwiklinski, K., Dumont, C., Tilley, L., Rohrbach, P., and Dalton, J.P. (2021). Biochemical and cellular characterisation of the Plasmodium falciparum M1 alanyl aminopeptidase (PfM1AAP) and M17 leucyl aminopeptidase (PfM17LAP). Sci. Rep. 11, 2854. https://doi.org/10.1038/s41598-021-82499-4.
29. Poreba, M., McGowan, S., Skinner-Adams, T.S., Trenholme, K.R., Gardiner, D.L., Whisstock, J.C., To, J., Salvesen, G.S., Dalton, J.P., and Drag, M. (2012). Fingerprinting the Substrate Specificity of M1 and M17 Aminopeptidases of Human Malaria, Plasmodium falciparum. PLoS One 7, e31938. https://doi.org/10.1371/journal.pone.0031938.
30. McGowan, S., Porter, C.J., Lowther, J., Stack, C.M., Golding, S.J., Skinner-Adams, T.S., Trenholme, K.R., Teuscher, F., Donnelly, S.M., and Grembecka, J. (2009). Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proceedings of the National Academy of Sciences 106, 2537-2542. https://doi.org/10.1073/pnas.0807398106.
31. Flipo, M., Beghyn, T., Leroux, V., Florent, I., Deprez, B.P., and Deprez-Poulain, R.F. (2007). Novel Selective Inhibitors of the Zinc Plasmodial Aminopeptidase PfA-M1 as Potential Antimalarial Agents. J. Med. Chem. 50, 1322-1334. https://doi.org/10.1021/jm061169b.
32. Harbut, M.B., Velmourougane, G., Reiss, G., Chandramohanadas, R., and Greenbaum, D.C. (2008). Development of bestatin-based activity-based probes for metallo-aminopeptidases. Bioorg. Med. Chem. Lett. 18, 5932-5936. https://doi.org/10.1016/j.bmcl.2008.09.021.
33. Velmourougane, G., Harbut, M.B., Dalal, S., McGowan, S., Oellig, C.A., Meinhardt, N., Whisstock, J.C., Klemba, M., and Greenbaum, D.C. (2011). Synthesis of New (−)-Bestatin-Based Inhibitor Libraries Reveals a Novel Binding Mode in the S1 Pocket of the Essential Malaria M1 Metalloaminopeptidase. J. Med. Chem. 54, 1655-1666. https://doi.org/10.1021/jm101227t.
34. McGowan, S., Oellig, C.A., Birru, W.A., Caradoc-Davies, T.T., Stack, C.M., Lowther, J., Skinner-Adams, T., Mucha, A., Kafarski, P., Grembecka, J., et al. (2010). Structure of the Plasmodium falciparum M17 aminopeptidase and significance for the design of drugs targeting the neutral exopeptidases. Proceedings of the National Academy of Sciences 107, 2449-2454. https://doi.org/10.1073/pnas.0911813107.
35. Challis, M.P., Devine, S.M., and Creek, D.J. (2022). Current and emerging target identification methods for novel antimalarials. Int. J. Parasitol. Drugs Drug Resist. 20, 135-144. https://doi.org/10.1016/j.ijpddr.2022.11.001.
36. Bailey, B.L., Nguyen, W., Cowman, A.F., and Sleebs, B.E. (2023). Chemo-proteomics in antimalarial target identification and engagement. Med. Res. Rev. n/a. https://doi.org/10.1002/med.21975.
37. Carolino, K., and Winzeler, E.A. (2020). The antimalarial resistome – finding new drug targets and their modes of action. Current Opinion in Microbiology 57, 49-55. https://doi.org/10.1016/j.mib.2020.06.004.
38. Baragana, B., Hallyburton, I., Lee, M.C.S., Norcross, N.R., Grimaldi, R., Otto, T.D., Proto, W.R., Blagborough, A.M., Meister, S., Wirjanata, G., et al. (2015). A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 522, 315-320. https://doi.org/10.1038/nature14451.
39. Summers, R.L., Pasaje, C.F.A., Pisco, J.P., Striepen, J., Luth, M.R., Kumpornsin, K., Carpenter, E.F., Munro, J.T., Lin, D., Plater, A., et al. (2021). Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chem. Biol. https://doi.org/10.1016/j.chembiol.2021.07.010.
40. Cowell, A.N., Istvan, E.S., Lukens, A.K., Gomez-Lorenzo, M.G., Vanaerschot, M., Sakata-Kato, T., Flannery, E.L., Magistrado, P., Owen, E., Abraham, M., et al. (2018). Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science 359, 191-199. https://doi.org/10.1126/science.aan4472.
41. Flannery, E.L., McNamara, C.W., Kim, S.W., Kato, T.S., Li, F., Teng, C.H., Gagaring, K., Manary, M.J., Barboa, R., Meister, S., et al. (2015). Mutations in the P-Type Cation-Transporter ATPase 4, PfATP4, Mediate Resistance to Both Aminopyrazole and Spiroindolone Antimalarials. ACS Chem. Biol. 10, 413-420. https://doi.org/10.1021/cb500616x.
42. Yang, T., Ottilie, S., Istvan, E.S., Godinez-Macias, K.P., Lukens, A.K., Baragaña, B., Campo, B., Walpole, C., Niles, J.C., Chibale, K., et al. (2021). MalDA, Accelerating Malaria Drug Discovery. Trends Parasitol. 37, 493-507. https://doi.org/10.1016/j.pt.2021.01.009.
43. Siddiqui, G., Giannangelo, C., De Paoli, A., Schuh, A.K., Heimsch, K.C., Anderson, D., Brown, T.G., MacRaild, C.A., Wu, J., Wang, X., et al. (2022). Peroxide antimalarial drugs target redox homeostasis in Plasmodium falciparum infected red blood cells. ACS Infect. Dis. https://doi.org/10.1021/acsinfecdis.1c00550.
44. Molina, D.M., Jafari, R., Ignatushchenko, M., Seki, T., Larsson, E.A., Dan, C., Sreekumar, L., Cao, Y., and Nordlund, P. (2013). Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341, 84-87. https://doi.org/10.1126/science.1233606.
45. Dziekan, J.M., Yu, H., Chen, D., Dai, L., Wirjanata, G., Larsson, A., Prabhu, N., Sobota, R.M., Bozdech, Z., and Nordlund, P. (2019). Identifying purine nucleoside phosphorylase as the target of quinine using cellular thermal shift assay. Sci. Transl. Med. 11, eaau3174. https://doi.org/10.1126/scitranslmed.aau3174.
46. Piazza, I., Beaton, N., Bruderer, R., Knobloch, T., Barbisan, C., Chandat, L., Sudau, A., Siepe, I., Rinner, O., de Souza, N., et al. (2020). A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat. Commun. 11, 4200. https://doi.org/10.1038/s41467-020-18071-x.
47. Wirjanata, G., Dziekan, J.M., Lin, J., Sahili, A.E., Binte Zulkifli, N.E., Boentoro, J., Go, K.D., Yu, H., Partridge, A., Olsen, D., et al. (2021). Identification of an inhibitory pocket in falcilysin bound by chloroquine provides a new avenue for malaria drug development. bioRxiv, 2021.2004.2008.438947. https://doi.org/10.1101/2021.04.08.438947.
48. Gavigan, C.S., Dalton, J.P., and Bell, A. (2001). The role of aminopeptidases in haemoglobin degradation in Plasmodium falciparum-infected erythrocytes. Molecular and biochemical parasitology 117, 37-48. https://doi.org/10.1016/S0166-6851(01)00327-9.
49. Yang, T., Xie, S.C., Cao, P., Giannangelo, C., McCaw, J., Creek, D.J., Charman, S.A., Klonis, N., and Tilley, L. (2016). Comparison of the exposure time-dependence of the activities of synthetic ozonide antimalarials and dihydroartemisinin against K13 wild-type and mutant Plasmodium falciparum strains. Antimicrob. Agents Chemother. 60, 4501-4510. https://doi.org/10.1128/AAC.00574-16.
50. Zhang, M., Wang, C., Otto, T.D., Oberstaller, J., Liao, X., Adapa, S.R., Udenze, K., Bronner, I.F., Casandra, D., Mayho, M., et al. (2018). Uncovering the essential genes of the human malaria parasite Plasmodium falciparum by saturation mutagenesis. Science 360, eaap7847. https://doi.org/10.1126/science.aap7847.
51. Siddiqui, G., De Paoli, A., MacRaild, C.A., Sexton, A.E., Boulet, C., Shah, A.D., Batty, M.B., Schittenhelm, R.B., Carvalho, T.G., and Creek, D.J. (2022). A new mass spectral library for high-coverage and reproducible analysis of the Plasmodium falciparum–infected red blood cell proteome. GigaScience 11. https://doi.org/10.1093/gigascience/giac008.
52. George, A.L., Sidgwick, F.R., Watt, J.E., Martin, M.P., Trost, M., Marín-Rubio, J.L., and Dueñas, M.E. (2023). Comparison of Quantitative Mass Spectrometric Methods for Drug Target Identification by Thermal Proteome Profiling. J Proteome Res. https://doi.org/10.1021/acs.jproteome.3c00111.
53. Dziekan, J.M., Wirjanata, G., Dai, L., Go, K.D., Yu, H., Lim, Y.T., Chen, L., Wang, L.C., Puspita, B., Prabhu, N., et al. (2020). Cellular thermal shift assay for the identification of drug–target interactions in the Plasmodium falciparum proteome. Nat. Protoc. 15, 1881-1921. https://doi.org/10.1038/s41596-020-0310-z.
54. Piazza, I., Kochanowski, K., Cappelletti, V., Fuhrer, T., Noor, E., Sauer, U., and Picotti, P. (2018). A Map of Protein-Metabolite Interactions Reveals Principles of Chemical Communication. Cell 172, 358-372.e323. https://doi.org/10.1016/j.cell.2017.12.006.
55. Creek, D.J., Chua, H.H., Cobbold, S.A., Nijagal, B., MacRae, J.I., Dickerman, B.K., Gilson, P.R., Ralph, S.A., and McConville, M.J. (2016). Metabolomics-based screening of the malaria box reveals both novel and established mechanisms of action. Antimicrob. Agents Chemother. 60, 6650-6663. https://doi.org/10.1128/aac.01226-16.
56. Giannangelo, C., Siddiqui, G., De Paoli, A., Anderson, B.M., Edgington-Mitchell, L.E., Charman, S.A., and Creek, D.J. (2020). System-wide biochemical analysis reveals ozonide antimalarials initially act by disrupting Plasmodium falciparum haemoglobin digestion. PLoS Pathog. 16, e1008485. https://doi.org/10.1371/journal.ppat.1008485.
57. Birrell, G.W., Challis, M.P., De Paoli, A., Anderson, D., Devine, S.M., Heffernan, G.D., Jacobus, D.P., Edstein, M.D., Siddiqui, G., and Creek, D.J. (2020). Multi-omic characterization of the mode of action of a potent new antimalarial compound, JPC-3210, Against Plasmodium falciparum. Mol. Cell. Proteomics 19, 308-325. https://doi.org/10.1074/mcp.RA119.001797.
58. Milne, R., Wiedemar, N., Corpas-Lopez, V., Moynihan, E., Wall, R.J., Dawson, A., Robinson, D.A., Shepherd, S.M., Smith, R.J., Hallyburton, I., et al. (2022). Toolkit of Approaches To Support Target-Focused Drug Discovery for Plasmodium falciparum Lysyl tRNA Synthetase. ACS Infect. Dis. 8, 1962-1974. https://doi.org/10.1021/acsinfecdis.2c00364.
59. Gillet, L.C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter, L., Bonner, R., and Aebersold, R. (2012). Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Mol. Cell. Proteomics 11. https://doi.org/10.1074/mcp.O111.016717.
60. Papakyriakou, A., and Stratikos, E. (2017). The role of conformational dynamics in antigen trimming by intracellular aminopeptidases. Front. Immunol. 8. https://doi.org/10.3389/fimmu.2017.00946.
61. Moore, D.S., Brines, C., Jewhurst, H., Dalton, J.P., and Tikhonova, I.G. (2018). Steered molecular dynamics simulations reveal critical residues for (un)binding of substrates, inhibitors and a product to the malarial M1 aminopeptidase. PLoS Comput. Biol. 14, e1006525. https://doi.org/10.1371/journal.pcbi.1006525.
62. Shang, X., Wang, C., Fan, Y., Guo, G., Wang, F., Zhao, Y., Sheng, F., Tang, J., He, X., Yu, X., et al. (2022). Genome-wide landscape of ApiAP2 transcription factors reveals a heterochromatin-associated regulatory network during Plasmodium falciparum blood-stage development. Nucleic Acids Res. 50, 3413-3431. https://doi.org/10.1093/nar/gkac176.
63. Ragheb, D., Dalal, S., Bompiani, K.M., Ray, W.K., and Klemba, M. (2011). Distribution and biochemical properties of an M1-family aminopeptidase in Plasmodium falciparum indicate a role in vacuolar hemoglobin catabolism. J. Biol. Chem. 286, 27255-27265. https://doi.org/10.1074/jbc.M111.225318.
64. Plouffe, D., Brinker, A., McNamara, C., Henson, K., Kato, N., Kuhen, K., Nagle, A., Adrian, F., Matzen, J.T., Anderson, P., et al. (2008). In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proceedings of the National Academy of Sciences of the United States of America 105, 9059-9064. https://doi.org/10.1073/pnas.0802982105.
65. Gamo, F.J., Sanz, L.M., Vidal, J., de Cozar, C., Alvarez, E., Lavandera, J.L., Vanderwall, D.E., Green, D.V., Kumar, V., Hasan, S., et al. (2010). Thousands of chemical starting points for antimalarial lead identification. Nature 465, 305-310. https://doi.org/10.1038/nature09107.
66. Guiguemde, W.A., Shelat, A.A., Garcia-Bustos, J.F., Diagana, T.T., Gamo, F.J., and Guy, R.K. (2012). Global phenotypic screening for antimalarials. Chem Biol 19, 116-129. https://doi.org/10.1016/j.chembiol.2012.01.004.
67. Trager, W., and Jensen, J.B. (1976). Human malaria parasites in continuous culture. Science 193, 673-675. https://doi.org/10.1126/science.781840.
68. Lambros, C., and Vanderberg, J.P. (1979). Synchronization of Plasmodium falciparum erythrocytic stages in culture. J. Parasitol. 65, 418-420. https://doi.org/10.2307/3280287.
69. Rappsilber, J., Ishihama, Y., and Mann, M. (2003). Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663-670. https://doi.org/10.1021/ac026117i.
70. Alexa, A., and Rahnenführer, J. (2020). topGO: Enrichment Analysis for Gene Ontology, R package version 2.42.0.
71. Alexa, A., Rahnenführer, J., and Lengauer, T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600-1607. https://doi.org/10.1093/bioinformatics/btl140.
72. Malcolm, T.R., Swiderska, K.W., Hayes, B.K., Webb, C.T., Drag, M., Drinkwater, N., and McGowan, S. (2021). Mapping the substrate specificity of the Plasmodium M1 and M17 aminopeptidases. Biochem. J. 478, 2697-2713. https://doi.org/10.1042/bcj20210172.
73. Drinkwater, N., Sivaraman, K.K., Bamert, R.S., Rut, W., Mohamed, K., Vinh, N.B., Scammells, P.J., Drag, M., and McGowan, S. (2016). Structure and substrate fingerprint of aminopeptidase P from Plasmodium falciparum. Biochem. J. 473, 3189-3204. https://doi.org/10.1042/bcj20160550.
74. Sivaraman, K.K., Oellig, C.A., Huynh, K., Atkinson, S.C., Poreba, M., Perugini, M.A., Trenholme, K.R., Gardiner, D.L., Salvesen, G., Drag, M., et al. (2012). X-ray crystal structure and specificity of the Plasmodium falciparum malaria aminopeptidase PfM18AAP. J. Mol. Biol. 422, 495-507. https://doi.org/10.1016/j.jmb.2012.06.006.
75. Cowieson, N.P., Aragao, D., Clift, M., Ericsson, D.J., Gee, C., Harrop, S.J., Mudie, N., Panjikar, S., Price, J.R., Riboldi-Tunnicliffe, A., et al. (2015). MX1: a bending-magnet crystallography beamline serving both chemical and macromolecular crystallography communities at the Australian Synchrotron. Journal of Synchrotron Radiation 22, 187-190. https://doi.org/10.1107/S1600577514021717.
76. Kabsch, W. (2010). XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125-132. https://doi.org/10.1107/s0907444909047337.
77. Evans, P.R., and Murshudov, G.N. (2013). How good are my data and what is the resolution? Acta Crystallographica Section D 69, 1204-1214. https://doi.org/10.1107/S0907444913000061.
78. Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G., McCoy, A., et al. (2011). Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235-242. https://doi.org/10.1107/s0907444910045749.
79. McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674. https://doi.org/10.1107/s0021889807021206.
80. Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221. https://doi.org/10.1107/s0907444909052925.
81. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126-2132. https://doi.org/10.1107/s0907444904019158.
82. Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501. https://doi.org/10.1107/s0907444910007493.
83. Smilkstein, M., Sriwilaijaroen, N., Kelly, J.X., Wilairat, P., and Riscoe, M. (2004). Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob. Agents Chemother. 48, 1803-1806. https://doi.org/10.1128/AAC.48.5.1803-1806.2004.
84. Snyder, C., Chollet, J., Santo-Tomas, J., Scheurer, C., and Wittlin, S. (2007). In vitro and in vivo interaction of synthetic peroxide RBx11160 (OZ277) with piperaquine in Plasmodium models. Exp. Parasitol. 115, 296-300. http://dx.doi.org/10.1016/j.exppara.2006.09.016.
85. Duffy, S., and Avery, V.M. (2013). Identification of inhibitors of Plasmodium falciparum gametocyte development. Malar. J. 12, 408. https://doi.org/10.1186/1475-2875-12-408.
86. Duffy, S., Loganathan, S., Holleran, J.P., and Avery, V.M. (2016). Large-scale production of Plasmodium falciparum gametocytes for malaria drug discovery. Nat. Protoc. 11, 976-992. https://doi.org/10.1038/nprot.2016.056.
87. Lucantoni, L., Loganathan, S., and Avery, V.M. (2017). The need to compare: assessing the level of agreement of three high-throughput assays against Plasmodium falciparum mature gametocytes. Sci. Rep. 7, 45992. https://doi.org/10.1038/srep45992.
88. Duffy, S., and Avery, V.M. (2012). Development and Optimization of a Novel 384-Well Anti-Malarial Imaging Assay Validated for High-Throughput Screening. The American Society of Tropical Medicine and Hygiene 86, 84-92. https://doi.org/10.4269/ajtmh.2012.11-0302.
89. Bevan, C.D., and Lloyd, R.S. (2000). A high-throughput screening method for the determination of aqueous drug solubility using laser nephelometry in microtiter plates. Anal. Chem. 72, 1781-1787. https://doi.org/10.1021/ac9912247.
90. Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, Deepti J., Prakash, A., Frericks-Zipper, A., Eisenacher, M., et al. (2021). The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543-D552. https://doi.org/10.1093/nar/gkab1038.