[1] Dai XY, Su YR, Wei WX, Wu JS, Fan YK. Effects of top excision on the potassium accumulation and expression of potassium channel genes in tobacco. J. Exp. Bot. 2009;60:279-289.
[2] Dreyer I, Uozumi N. Potassium channels in plant cells. FEBS J. 2011;278:4293-4303.
[3] Wang Y, Wu WH. Potassium transport and signaling in higher plants. Annu. Rev. Plant Biol. 2013;64:451-476.
[4] Epstein E, Rains DW, Elzam OE. Resolution of Dual Mechanisms of Potassiun Absorption. Proc Natl Acad Sci USA 1963;49:684-692.
[5] Manav S, Sheli M, Sabyasachi S. Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum)plant growth. Rsc Adv. 2014;4:39948-39954.
[6] Hu X, Ouyang S, Mu L, An J, Zhou Q. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles. Environ Sci Technol 2015;49:10825-33.
[7] Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z. Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano 2009;3:3221-3227.
[8] Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, et al. Effects of Functionlized and Nonfunctionlized Single-Walled Carbon Nonatubes on Root Elongation of Select Crop Species. Environ Toxicol Chem 2008;27:1922-1931.
[9] Kumar A, Singh A, Panigrahy M, Sahoo PK, Panigrahi KCS. Carbon nanoparticles influence photomorphogenesis and flowering time in Arabidopsis thaliana. Plant Cell Rep 2018;1-12.
[10] Khodakovskaya MV, Silva KD, Biris AS, Dervishi E, andVillagarcia H. Carbon Nanotubes Induce Growth Enhancement of Tobacco Cells. ACS Nano 2012;6:2128-2135.
[11] Tiwari DK, Dasgupta-Schubert N, Villaseñor Cendejas LM, Villegas J, Carreto Montoya L, Borjas García SE. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 2013;4:577-591.
[12] Calvaresi M, Furini S, Domene C, Bottoni A, Zerbetto F. Blocking the Passage: C60 Geometrically Clogs K+ Channels. ACS Nano 2015;9:4827-4834.
[13] Chen T, Yang J, Ren G, Yang Z, Zhang T. Multi-walled carbon nanotube increases the excitability of hippocampal CA1 neurons through inhibition of potassium channels in rat's brain slices. Toxicol Lett 2013;217:121-8.
[14] Park KH, Chhowalla M, Iqbal Z, Sesti F. Single-walled Carbon Nanotubes Are a New Class of Ion Channel Blockers. J Biol Chem 2003;278:50212-50216.
[15] Monticelli L, Barnoud J, Orlowski A, Vattulainen I. Interaction of C70 fullerene with the Kv1.2 potassium channel.Phys. Chem Chem Phys 2012;14:12526.
[16] Kraszewski S, Tarek M, Treptow W, and Ramseyer C. Affinity of C60 Neat Fullerenes with Membrane Proteins: A Computational Study on Potassium Channels. ACS Nano 2010;4:4158-4164.
[17] Xu H, Bai J, Meng J, Hao W, Xu H, Cao JM. Multi-walled carbon nanotubes suppress potassium channel activities in PC12 cells. Nanotechnology 2009;20:285102.
[18] Chiacchiaretta M, Bramini M, Rocchi A, Armirotti A, Giordano E, Vazquez E, et al. Graphene Oxide Upregulates the Homeostatic Functions of Primary Astrocytes and Modulates Astrocyte-to-Neuron Communication. Nano Lett 2018;18:5827-5838.
[19] Amiri H, Shepard KL, Nuckolls C, Sanchez R H. Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels. Nano Lett 2017;17:1204-1211.
[20] Sano T, Kutsuna N, Becker D, Hedrich R, Hasezawa S. Outward-rectifying K+ channel activities regulate cell elongation and cell division of tobacco BY-2 cells. Plant J 2009;57:55-64.
[21] Sano T, Becker D, Ivashikina N, Wegner LH, Zimmermann U, Roelfsema MR, et al. Plant cells must pass a K+ threshold to re-enter the cell cycle. Plant J 2007;50:401-413.
[22] Chen L,Wang H, Li X, Nie C, Liang T, Xie F, et al. Highly hydrophilic carbon nanoparticles: uptake mechanism by mammalian and plant cells. RSC Adv 2018;8:35246-35256.
[23] Chen L, Hao J, Xu L, Meng X, Li X, Nie C, et al.Spectroscopic approach for the interaction of carbon nanoparticles with cytochrome c and BY-2 cells: Protein structure and mitochondrial function. Int J Biol Macromol 2019;138:29-36.
[24] Wu H, Shabala L, Shabala S, Giraldo JP. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environ Sci: Nano 2018;5:1567-1583.
[25] Chen T, Wang W, Xu K, Xu Y, Ji D, Chen C, et al. K+ and Na+ transport contribute to K+/Na+ homeostasis in Pyropia haitanensis under hypersaline stress. Algal Res 2019;40:101526.
[26] Li S, Yu J, Zhu M, Zhao F, Luan S. Cadmium impairs ion homeostasis by altering K+ and Ca2+ channel activities in rice root hair cells. Plant Cell Environ 2012;35:1998-2013.
[27] Steinbock LJ, Otto O, Skarstam DR, Jahn S, Chimerel C, Gornall JL, et al. Probing DNA with micro- and nanocapillaries and optical tweezers. J Phys Condens Matter 2010;22:454113.
[28] Liu Q, Wang S, Zheng Y, Luo Z, Cen K. Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. J Anal Appl Pyrolysis 2008;82:170-177.
[29] Zhang X, Wu H, Chen L, Liu L,Wan X. Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration.The Crop Journal 2018;6:611-620.
[30] Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B,Palmgren MG, et al. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 2011;12:60-70.
[31] Wang Y, Noguchi K, Ono N, Inoue S, Terashima I, Kinoshita T. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. Proc Natl Acad Sci USA 2014;111:533-8.
[32] Garcia-Fandino R, Sansom MS. Designing biomimetic pores based on carbon nanotubes. Proc Natl Acad Sci USA 2012;109:6939-44.
[33] Yao H, Zeng J, Zhai P, Li Z, Cheng Y, Liu J, et al. Large Rectification Effect of Single Graphene Nanopore Supported by PET Membrane. ACS Appl Mater Interfaces 2017;9:11000-11008.
[34] Olkhovych O, Volkogon M, Taran N, Batsmanova L, Kravchenko I. The Effect of Copper And Zinc Nanoparticles on the Growth Parameters, Contents of Ascorbic Acid, and Qualitative Composition of Amino Acids and Acylcarnitines in Pistia stratiotes L. (Araceae). Nanoscale Res Lett 2016;11. DOI 10.1186/s11671-016-1422-9.
[35] Sadeghnezhad E, Sharifi M, Zare-Maivan H. Profiling of acidic (amino and phenolic acids) and phenylpropanoids production in response to methyl jasmonate-induced oxidative stress in Scrophularia striata suspension cells. Planta 2016;244:75-85.
[36] Hildebrandt TM, Nesi AN, Araújo WL,Braun HP. Amino Acid Catabolism in Plants. Mol Plant 2015;8:1563-1579.
[37] Hatami M, Hadian J, Ghorbanpour M. Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J Hazard Mater 2017;324:306-320.
[38] Zheng J, Zhang X, Xin Q, Pan T, Wang Z. Efficient accumulation of sclerotiorin via overcoming low pH caused by overflow carbon metabolism during cell suspension culture of Penicillium sclerotiorum. Process Biochem 2019;82:32-39.
[39] Shabala L, Zhang J, Pottosin I, Bose J, Zhu M, Fuglsang AT, et al.Cell-Type-Specific H+-ATPase Activity in Root Tissues Enables K+ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress. Plant Physiol 2016;172:2445-2458.
[40] Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakovskaya MV. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small 2012;8:2328-2334.
[41] Zhou YF, MacKinnon R. The Occupancy of Ions in the K+ Selectivity Filter: Charge Balance and Coupling of Ion Binding to a Protein Conformational Change Underlie High Conduction Rates. J Mol Biol 2003;333:965-975.
[42] Zhou M, MacKinnon R. A mutant KcsA K(+) channel with altered conduction properties and selectivity filter ion distribution. J Mol Biol 2004;338:839-846.
[43] Mohd Zain NA, Ismail MR. Effects of potassium rates and types on growth, leaf gas exchange and biochemical changes in rice (Oryza sativa) planted under cyclic water stress. Agric Water Manage 2016;164:83-90.