In the paper, by means of the Faa di Bruno formula, with the help of explicit formulas for special values of the Bell polynomials of the second kind with respect to a specific sequence, and by virtue of two combinatorial identities containing the Stirling numbers of the first kind, the author establishes Maclaurin's series expansions for real powers of the inverse cosine (sine) function and the inverse hyperbolic cosine (sine) function. By applying different series expansions for the square of the inverse cosine function, the author not only finds infinite series representations of the circular constant Pi and its square, but also derives two combinatorial identities involving central binomial coefficients.