Ackermann, E. (2001). Piaget ’ s Constructivism , Papert ’ s Constructionism : What ’ s the difference ? Future of Learning Groups Publication.
Adams, J. C. (2010). Scratching middle schoolers’ creative itch. SIGCSE’10 - Proceedings of the 41st ACM Technical Symposium on Computer Science Education. https://doi.org/10.1145/1734263.1734385
Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science and Technology Education, 6, 63–71. Retrieved from http://earthlab.uoi.gr/theste/index.php/theste/article/view/119
Arastoopour Irgens, G., Dabholkar, S., Bain, C., Woods, P., Hall, K., Swanson, H., … Wilensky, U. (2020). Modeling and Measuring High School Students’ Computational Thinking Practices in Science. Journal of Science Education and Technology, 29(1). https://doi.org/10.1007/s10956-020-09811-1
Atmatzidou, S., & Demetriadis, S. (2016). Advancing students’ computational thinking skills through educational robotics: A study on age and gender relevant differences. Robotics and Autonomous Systems. https://doi.org/10.1016/j.robot.2015.10.008
Ausubel, D. P., Novak, J. D., & Hanesian, H. (1976). Significado y aprendizaje significativo. In Psicología educativa: un punto de vista cognoscitivo (Vol. 3).
Bandura, A. (2001). Social cognitive theory: An agentic perspective. Annual review of psychology, 52(1), 1-26.
Basu, S., Rutstein, D., Shear, L., & Xu, Y. (2020). A principled approach to designing a computational thinking practices assessment for early grades. Annual Conference on Innovation and Technology in Computer Science Education, ITiCSE. https://doi.org/10.1145/3328778.3366849
Baytak, A., & Land, S. M. (2011). An investigation of the artifacts and process of constructing computers games about environmental science in a fifth grade classroom. Educational Technology Research and Development, 59(6). https://doi.org/10.1007/s11423-010-9184-z
Bell, S. (2010). Project-Based Learning for the 21st Century: Skills for the Future. The Clearing House: A Journal of Educational Strategies, Issues and Ideas. https://doi.org/10.1080/00098650903505415
Bellanca, J. A. (Ed.). (2010). 21st century skills: Rethinking how students learn. Solution Tree Press
Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers and Education, Vol. 58, pp. 978–988.
Bequette, J., & Bequette, M. (2012). A place for art and design education in the STEM conversation. Art Education, (March), 40–48. Retrieved from http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:A+Place+for+Art+and+Design+Education+in+the+STEM+conversation#0
Bers, M. U. (2010). Beyond computer literacy: supporting youth’s positive development through technology. New Directions for Youth Development. https://doi.org/10.1002/yd.371
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers and Education, 72, 145–157.
Branch, J., & Oberg, D. (2004). Focus on inquiry: A teacher’s guide to implementing inquiry-based learning. Canada: Alberta Education, Alberta.
Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Annual American Educational Research Association Meeting, Vancouver, BC, Canada.
Bruner, J.S. (1987). Acts of the meaning. Cambrigde: Harvard University Press.
Burrows, A., Lockwood, M., Borowczak, M., Janak, E., & Barber, B. (2018). Integrated STEM: Focus on informal education and community collaboration through engineering. Education Sciences, 8(1). https://doi.org/10.3390/educsci8010004
Capraro, R. M., Capraro, M. M., & Morgan, J. R. (2013). STEM Project-Based Learning an Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach. https://doi.org/10.1007/978-94-6209-143-6
Capraro, R. M., & Slough, S. W. (2008). Project based learning: An integrated science technology
engineering and mathematics (STEM) approach. Rotterdam, The Netherlands,
Cobo, J. C. (2009). El concepto de la informacion Benchamarking sobre las deginiciones de las TIC en la sociedad del conocimiento. Zer.
Dagdilelis, V., Sartatzemi, M., & Kagani, K. (2005). Teaching (with) robots in secondary schools: Some new and not-so-new pedagogical problems. Proceedings - 5th IEEE International Conference on Advanced Learning Technologies, ICALT 2005. https://doi.org/10.1109/ICALT.2005.255
Danahy, E., Wang, E., Brockman, J., Carberry, A., Shapiro, B., & Rogers, C. B. (2014). LEGO-based robotics in higher education: 15 years of student creativity. International Journal of Advanced Robotic Systems, 11(1). https://doi.org/10.5772/58249
Decret 187/2015, de 25 d’agost, d’ordenació dels ensenyaments de l’educació secundària obligatòria. Diari Oficial de La Generalitat de Catalunya, 6945.
Dewey, J. (1938) Logic: The theory of inquiry. The Later Works, (May 1938).
Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2021). Computational thinking in programming with scratch in primary schools: A systematic review. Computer Applications in Engineering Education, 29(1), 12-28.
Fatourou, E., Zygouris, N. C., Loukopoulos, T., & Stamoulis, G. I. (2018). Teaching concurrent programming concepts using scratch in primary school: Methodology and evaluation. International Journal of Engineering Pedagogy, 8(4). https://doi.org/10.3991/ijep.v8i4.8216
Franklin, D., Skifstad, G., Rolock, R., Mehrotra, I., Ding, V., Hansen, A., … Harlow, D. (2017). Using upper-elementary student performance to understand conceptual sequencing in a blocks-based curriculum. Proceedings of the Conference on Integrating Technology into Computer Science Education, ITiCSE. https://doi.org/10.1145/3017680.3017760
Generalitat of Catalonia Department of Education. Curriculum of Secondary Education. Basic skills in the digital realm. Identification and deployment in compulsory secondary education. (2013)
Grover, S., & Pea, R. (2013). Computational Thinking in K–12. Educational Researcher, 42(1), 38–43. https://doi.org/10.3102/0013189X12463051
Grover, S., Pea, R., & Cooper, S. (2015). Designing for deeper learning in a blended computer science course for middle school students. Computer Science Education, 25(2). https://doi.org/10.1080/08993408.2015.1033142
Horn, M. S., & Jacob, R. J. K. (2007). Designing tangible programming languages for classroom use. TEI’07: First International Conference on Tangible and Embedded Interaction. https://doi.org/10.1145/1226969.1227003
Kessler, J. H., & Galvan, P. M. (2007). Inquiry in action—investigating matter through inquiry. 3rd.
Lye, S. Y., & Koh, J. H. L. (2018). Case studies of elementary children’s engagement in computational thinking through scratch programming. In Computational thinking in the STEM disciplines (pp. 227-251). Springer, Cham.
Llei 12/2009, del 10 de juliol, d’educació (DOGC núm. 5422, de 16.7.2009, p. 56.589)
Marji, M. (2014). Learn to program with Scratch: A visual introduction to programming with games, art, science, and math. No Starch Press.
Maloney, J. H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice. ACM SIGCSE Bulletin, 40(1). https://doi.org/10.1145/1352322.1352260
Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming Language and Environment. ACM Transactions on Computing Education, 10(4), 1–15. https://doi.org/10.1145/1868358.1868363
Mishra, P., & Koehler, M. J. (2006). Technological pedMishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for teacher knowledge. Teachers College Record. doi:10.1111/j.1467-9620.2006.00684.xagogical content knowledge: A framework for teacher knowledg. Teachers College Record. https://doi.org/10.1111/j.1467-9620.2006.00684.x
Mubin, O., Stevens, C. J., Shahid, S., Mahmud, A. Al, & Dong, J.-J. (2013). A REVIEW OF THE APPLICABILITY OF ROBOTS IN EDUCATION. Technology for Education and Learning. https://doi.org/10.2316/journal.209.2013.1.209-0015
Papert, S. (1980). Computers for children. In Mindstorms: Children, computers, and powerful ideas.
Papert, Seymour, & Harel, I. (1991). Situating Constructionism. Constructionism.
Piaget, J. (1973). To understand is to invent: the future of education (G. Roberts, Trans.). NY: Grossman Publishers, A DIVISION OF THE VIKING PRESS, NEW YORK.
Portelance, D. J., Strawhacker, A. L., & Bers, M. U. (2016). Constructing the ScratchJr programming language in the early childhood classroom. International Journal of Technology and Design Education, 26(4). https://doi.org/10.1007/s10798-015-9325-0
Resnick, M., Kafai, Y., Maeda, J., Rusk, N., & Maloney, J. (2003). A networked, media-rich programming environment to enhance technological fluency at after-school centers in economically-disadvantaged communities. Proposal to National Science Foundation.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., … Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67. https://doi.org/10.1145/1592761.1592779
Saengbanchong, V., Wiratchai, N., & Bowarnkitiwong, S. (2014). Validating the Technological Pedagogical Content Knowledge Appropriate for Instructing Students (TPACK-S) of Pre-service Teachers. Procedia - Social and Behavioral Sciences. https://doi.org/10.1016/j.sbspro.2014.01.252
Sahin, A. (2013). STEM project-based learning: Specialized form of inquiry-based learning. In STEM Project-Based Learning an Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach. https://doi.org/10.1007/978-94-6209-143-6_7
Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher.
Scaradozzi, D., Sorbi, L., Pedale, A., Valzano, M., & Vergine, C. (2015). Teaching Robotics at the Primary School: An Innovative Approach. Procedia - Social and Behavioral Sciences. https://doi.org/10.1016/j.sbspro.2015.01.1122
Özel, S. (2013). W3 of STEM Project-Based Learning: Who, Where, and When: Revisited. In STEM project-based learning (pp. 41-49). Brill Sense.
Schmidt, D. A., Baran, E., Thompson, A. D., Mishra, P., Koehler, M. J., & Shin, T. S. (2009). Technological pedagogical content knowledge (Track): The development and validation of an assessment instrument for preservice teachers. Journal of Research on Technology in Education. https://doi.org/10.1080/15391523.2009.10782544
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 142–158. https://doi.org/10.1016/J.EDUREV.2017.09.003
Siemens, G. (2005). Connectivism: A learning theory for the digital age. International Journal of Instructional Technology and Distance Learning.
Slavin, R. E. (1980). Cooperative Learning. Review of Educational Research. https://doi.org/10.3102/00346543050002315
Slough, S. W., & Milam, J. O. (2013). Theoretical framework for the design of STEM project-based learning. In STEM Project-Based Learning an Integrated Science, Technology, Engineering, and Mathematics (STEM) Approach. https://doi.org/10.1007/978-94-6209-143-6_3
Slough, S. W., & Milam, J. (2008). Theoretical framework for STEM project-based learning. Project based learning: An integrated science technology engineering and mathematics (STEM) approach, 19-37.
Solbes Matarredona, J. (2010). ¿Por qué disminuye el alumnado de ciencias? Alambique : Didáctica de Las Ciencias Experimentales.
Stohlmann, M., Moore, T., & Roehrig, G. (2012). Considerations for Teaching Integrated STEM Education. Journal of Pre-College Engineering Education Research, Vol. 2, pp. 28–34. https://doi.org/10.5703/1288284314653
Ternik, Ž., Koron, A., Koron, T., & Šerbec, I. N. (2017). Learning programming concepts through maze game in scratch. Proceedings of the 11th European Conference on Games Based Learning, ECGBL 2017.
Valls, A., Albó-Canals, J., & Canaleta, X. (2018). Creativity and Contextualization Activities in Educational Robotics to Improve Engineering and Computational Thinking. In W. Lepuschitz, M. Merdan, G. Koppensteiner, R. Balogh, & D. Obdržálek (Eds.), Robotics in Education: Latest Results and Developments (pp. 100–112). https://doi.org/https://doi.org/10.1007/978-3-319-62875-2_9
Vázquez, A., & Manassero, M. (2017). El declive de las actitudes hacia la ciencia de los estudiantes: un indicador inquietante para la educación científica. Revista Eureka Sobre Enseñanza Y Divulgación De Las Ciencias, 5(3), pp. 274-292. Recuperado a partir de https://reuredc.uca.es/index.php/eureka/article/view/3740
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard university press.
Wilson, A., Connolly, T., Hainey, T., & Moffat, D. (2011, October). Evaluation of introducing programming to younger school children using a computer game making tool. In Proceedings of the Fifth European Conference on Games Based Learning (pp. 639-649).
Wilson, A., Hainey, T., & Connolly, T. M. (2013). Using scratch with primary school children: An evaluation of games constructed to gauge understanding of programming concepts. International Journal of Game-Based Learning, 3(1). https://doi.org/10.4018/ijgbl.2013010107
Wing, J. M. (2006). ComputationalThinking. Magazine Communications of the ACM. https://doi.org/10.1145/1118178.1118215
Wing, J., & Wing, J. M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology. https://doi.org/10.17471/2499-4324/922
Wooster, J. S., & Papert, S. (2006). Mindstorms: Children, Computers, and Powerful Ideas. The English Journal. https://doi.org/10.2307/816450
Zhang, L. C., & Nouri, J. (2019). A systematic review of learning computational thinking through Scratch in K-9. Computers & Education, 141, 103607. https://doi.org/10.1016/J.COMPEDU.2019.103607